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1 Deformation theory

One of the main trends in modern physics and mathematics is to study a theory of defor-

mations. Deformations are performed first to specify a particular structure (e.g., complex,

symplectic, or algebraic structures) which one wants to deform, and then to introduce

a deformation parameter [~] such that the limit [~] → 0 recovers its parent theory. The

most salient examples of the deformation theories are Kodaira-Spencer theory, deformation

quantization, quantum group, etc. in mathematics and quantum mechanics, string theory,

noncommutative (NC) field theory, etc. in physics. Interestingly, consequences after the

deformation are often radical: A theory with [~] 6= 0 is often qualitatively different from
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its parent theory and reveals a unification of physical or mathematical structures (e.g.,

wave-particle duality, mirror symmetry, etc.).

Let us focus on the deformation theories appearing in physics. Our mission is to

deform some structures of a point-particle theory in classical mechanics. There could

be several in general, but the most salient ones among them are quantum mechanics,

string theory and NC field theory, which we call ~-deformation, α′-deformation and θ-

deformation, respectively. The deformation parameter [~] (which denotes a generic one) is

mostly a dimensionful constant and plays a role of a conversion factor bridging two different

quantities, e.g., p = 2π~/λ for the famous wave-particle duality in quantum mechanics. The

introduction of the new constant [~] into the theory is not a simple addition but often a

radical change of the parent theory triggering a new physics. Let us reflect the new physics

sprouted up from the [~]-deformation, which never exists in the [~] = 0 theory.

Quantum mechanics is the formulation of mechanics in NC phase space

[xi, pk] = i~δi
k. (1.1)

The deformation parameter ~ is to deform a commutative Poisson algebra of observables in

phase space into NC one. This ~-deformation (quantum mechanics) has activated revolu-

tionary changes of classical physics. One of the most prominent physics is the wave-particle

duality whose striking physics could be embodied in the two-slit experiment.

String theory can be regarded as a deformation of point-particle theory in the sense

that zero-dimensional point particles are replaced by one-dimensional extended objects,

strings, whose size is characterized by the parameter α′. This α′-deformation also results

in a fundamental change of physics, which has never been observed in a particle theory. It

is rather a theory of gravity (or grandiloquently a theory of everything). One of the striking

consequences due to the α′-deformation is ‘T-duality’, which is a symmetry between small

and large distances, symbolically represented by

R↔ α′

R
. (1.2)

The T-duality is a crucial ingredient for various string dualities and mirror symmetry.

NC field theory is the formulation of field theory in NC spacetime

[ya, yb]⋆ = iθab. (1.3)

See [1, 2] for a review of this subject. We will consider only space-noncommutativity

throughout the paper in spite of the abuse of the term ‘NC spacetime’ and argue in section

4.1 that “Time” emerges in a different way. This NC spacetime arises from introducing

a symplectic structure B = 1
2Babdy

a ∧ dyb and then quantizing the spacetime with its

Poisson structure θab ≡ (B−1)ab, treating it as a quantum phase space. In other words,

the spacetime (1.3) becomes a NC phase space. Therefore the NC field theory, which we

call θ-deformation, is mathematically very similar to quantum mechanics. They are all

involved with a NC ⋆-algebra generated by eq. (1.1) or eq. (1.3). Indeed we will find many

parallels. Another naive observation is that the θ-deformation (NC field theory) would be
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Theory Deformation New physics

Quantum mechanics ~ wave-particle duality

String theory α′ T-duality

NC field theory θab ?

Table 1. [~]-deformations and their new physics.

much similar to the α′-deformation from the viewpoint of deformation theory since the

deformation parameters α′ and θ equally carry the dimension of (length)2. A difference is

that the θ-deformation is done in the field theory framework. We will further elaborate the

similarity in this paper.

What is a new physics due to the θ-deformation ? A remarkable fact is that translations

in NC directions are an inner automorphism of NC ⋆-algebra Aθ, i.e., eik·y ⋆ f̂(y) ⋆ e−ik·y =

f̂(y + θ · k) for any f̂(y) ∈ Aθ or, in its infinitesimal form,

[ya, f̂(y)]⋆ = iθab∂bf̂(y). (1.4)

In this paper we will denote NC fields (or variables) with the hat as in eq. (1.4) but we

will omit the hat for NC coordinates ya in eq. (1.3) for notational convenience. We will

show that the θ-deformation is seeding in it the physics of the α′-deformation as well as

the ~-deformation, so to answer the question in the table 1.

This paper is organized as follows. In section 2 we review the picture of emergent grav-

ity presented in [3] with a few refinements. First we consolidate some results well-known

from string theory to explain why there always exists a coordinate transformation to locally

eliminate the electromagnetic force as long as D-brane worldvolume M supports a sym-

plectic structure B, i.e., M becomes a NC space. That is, the NC spacetime admits a novel

form of the equivalence principle, known as the Darboux theorem, for the geometrization

of the electromagnetism. It turns out [3] that the Darboux theorem as the equivalence

principle in symplectic geometry is the essence of emergent gravity. See the table 2. In

addition we add a new observation that the geometrization of the electromagnetism in the

B-field background can be nicely understood in terms of the generalized geometry [4, 5].

Recently there have been considerable efforts [3, 6–20] to construct gravity from NC field

theories. The emergent gravity has also been suggested to resolve the cosmological constant

problem and dark energy [15, 21].

In section 3, we put the arguments in section 2 on a firm foundation using the back-

ground independent formulation of NC gauge theory [22, 23]. In section 3.1, we first clarify

based on the argument in [14] that the emergent gravity from NC gauge theory is essen-

tially a large N duality consistent with the AdS/CFT duality [24]. And then we move onto

the geometric representation of NC field theory using the inner automorphism (1.4) of the

NC spacetime (1.3). In section 3.2, we show how to explicitly determine a gravitational

metric emerging from NC gauge fields and show that the equations of motion for NC gauge

fields are mapped to the Einstein equations for the emergent metric. This part consists

of our main new results generalizing the emergent gravity in [3, 12] for self-dual gauge

fields. In the course of the derivation, we find that NC gauge fields induce an exotic form
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of energy, dubbed as the Liouville energy-momentum tensor. A simple analysis shows that

this Liouville energy mimics the several aspects of dark energy, so we suggest the energy

as a plausible candidate of dark energy. In section 3.3, the emergent gravity is further

generalized to the nontrivial background of nonconstant θ induced by an inhomogenous

condensation of gauge fields. In section 3.4, we discuss the spacetime picture revealed from

NC gauge fields. We also confirm the observation in [15] that the emergent gravity reveals

a remarkably beautiful and consistent picture about the dynamical origin of flat spacetime.

In section 4 we speculate how to understand “Time” and matter fields in the context of

emergent geometry. As a first step, we elucidate in section 4.1 how the well-known ‘minimal

coupling’ of matters with gauge fields can be understood as a symplectic geometry in

phase space. There are two important works [25, 26] for this understanding. Based on the

symplectic geometry of particles, in section 4.2, we suggest a K-theory picture for matter

fields such as quarks and leptons adopting the Fermi-surface scenario in [27, 28] where

non-Abelian gauge fields are understood as collective modes acting on the matter fields.

In section 5, we address the problem on the existence of spin-2 bound states which

presupposes the basis of emergent gravity. Although we don’t know any rigorous proof, we

outline some positive evidences for the bound states using the relation to the AdS/CFT

duality. We further notice an interesting similarity between the BCS superconductivity [29]

and the emergent gravity about some dynamical mechanism for the spin-0 and spin-2 bound

states, respectively. See the table 3. We also discuss the issues on the Lorentz symmetry

breaking and the nonlocality in NC field theories from the viewpoint of emergent spacetime.

In section 6, we summarize the message uncovered by the emergent gravity picture

with some closing remarks.

The calculational details in section 3 are deferred to two appendices. In appendix A

we give a self-contained proof of the equivalence between self-dual NC electromagnetism

and self-dual Einstein gravity, first shown in [12], for completeness. The self-dual case

will provide a clear picture to appreciate what the emergent gravity is, which will also be

useful to consider a general situation of emergent gravity. In appendix B the equivalence

is generalized to arbitrary NC gauge fields.

2 Geometrization of forces

One of the guiding principles in modern physics is the geometrization of forces, i.e., to view

physical forces as a reflection of the curvature of the geometry of spacetime or internal

space. In this line of thought, gravity is quite different from the other three forces -

the electromagnetic, the weak, and the strong interactions. It is a manifestation of the

curvature of spacetime while the other three are a manifestation of the curvature of internal

spaces. If it makes sense to pursue a unification of forces, in which the four forces are

different manifestations of a single force, it would be desirable to reconcile gravity with

the others and to find a general categorical structure of physical forces: Either to find a

rationale that gravity is not a fundamental force or to find a framework that the other

three forces are also geometrical properties of spacetime. We will show these two features

are simultaneously realized in NC spacetime, at least, for the electromagnetism.

– 4 –
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2.1 Einstein’s happiest thought

The geometrization of forces is largely originated with Albert Einstein, whose general

theory of relativity is to view the gravity as a metric field of spacetime which is determined

by the distribution of matter and energy. The remarkable vision of gravity in terms of the

geometry of spacetime has been based on the local equivalence of gravitation and inertia,

or the local cancellation of the gravitational field by local inertial frames - the equivalence

principle. Einstein once recalled that the equivalence principle was the happiest thought

of his life.

The equivalence principle guarantees that it is “always” possible at any spacetime

point of interest to find a coordinate system, say ξα, such that the effects of gravity will

disappear over a differential region in the neighborhood of that point. (Precisely speaking,

the neighborhood should be taken small enough so that the variation of gravity within

the region may be neglected.) For a particle moving freely under the influence of purely

gravitational force, the equation of motion in terms of the freely falling coordinate system

ξα is thus
d2ξα

dτ2
= 0 (2.1)

with dτ the proper time

dτ2 = ηαβdξ
αdξβ. (2.2)

We will use the metric ηαβ with signature (−+ + · · · ) throughout the paper.

Suppose that we perform a coordinate transformation to find the corresponding equa-

tions in a laboratory at rest, which may be described by a Cartesian coordinate system

xµ. The freely falling coordinates ξα are then functions of the xµ, that is, ξα = ξα(x).

The freely falling particle in the laboratory coordinate system now obeys the equation of

motion
d2xµ

dτ2
+ Γµ

νλ

dxν

dτ

dxλ

dτ
= 0 (2.3)

where

dτ2 = gµν(x)dxµdxν (2.4)

and

gµν(x) = ηαβ
∂ξα

∂xµ

∂ξβ

∂xν
. (2.5)

It turns out that eq. (2.3) is the geodesic equation moving on the shortest possible path

between two points through the curved spacetime described by the metric (2.5). In the

end the gravitational force manifests itself only as the geometry of spacetime.

In accordance with the principle of general covariance the laws of physics must be

independent of the choice of spacetime coordinates. That is, eq. (2.3) is true in all co-

ordinate systems. For example, under a coordinate transformation xµ → x′µ, the metric

transforms into

g′µν(x′) =
∂xλ

∂x′µ
∂xσ

∂x′ν
gλσ(x) (2.6)

and eq. (2.3) transforms into the geodesic equation in the spacetime described by the

metric (2.6). The significance of the equivalence principle in conjunction with the principle
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of covariance lies in its statement that there “always” exists a locally inertial frame at

an arbitrary point P in spacetime where g′αβ(P ) = ηαβ and Γ′µ
αβ(P ) = 0. But the second

derivatives of g′αβ at P cannot all be set to zero unless the spacetime is flat. This coordinate

system is precisely the freely falling coordinates ξα in eq. (2.1), i.e., ξα = x′α(x), so the

metric at P in the original system can consistently be written as the form (2.5).

But a routine calculation using the metric (2.5) leads to identically vanishing curvature

tensors. Thus one may claim that the geometry described by the metric (2.5) is always flat.

Of course it should not be the case. Remember that the metric (2.5) in the x-coordinate

system should be understood at a point P since it has been obtained from the local inertial

frame ξα where g′αβ(P ) = ηαβ and Γ′µ
αβ(P ) = 0 are satisfied only at that point. In order

to calculate the curvature tensors correctly, one needs to extend the local inertial frame

at P to an infinitesimal neighborhood. A special and useful realization of such a local

inertial frame is a Riemann normal coordinate system [30] (where we choose the point P

as a coordinate origin, i.e., ξα|P = xµ|P = 0)

ξα(x) = xα +
1

2
Γα

µν(P )xµxν +
1

6

(
Γα

µβΓβ
νλ + ∂λΓα

µν

)
(P )xµxνxλ + · · · , (2.7)

which can be checked using eq. (2.6) with the identification x′α = ξα. One can then arrive

at a metric

g′αβ(x) = ηαβ −
1

3
Rαµβν(P )xµxν − 1

6
DλRαµβν(P )xλxµxν + · · · . (2.8)

2.2 Darboux theorem as the equivalence principle in symplectic geometry

What about other forces ? Is it possible to realize, for example, the electromagnetism as a

geometrical property of spacetime like gravity ? To be specific, we are wondering whether

or not there “always” exists any coordinate transformation to eliminate the electromagnetic

force at least locally. The usual wisdom says no since there is no analogue of the equivalence

principle for the geometrization of the electromagnetic force. But one has to recall that

this wisdom has been based on the usual concept of geometry, i.e., Riemannian geometry in

commutative spacetime. Surprisingly, the conventional wisdom turns out to be no longer

true in NC spacetime, which is based on symplectic geometry in sharp contrast to the

Riemannian geometry.

We will show that it is “always” possible to find a coordinate transformation to elimi-

nate locally the electromagnetic force if and only if spacetime supports a symplectic struc-

ture, viz., NC spacetime. To be definite, we will proceed with string theory although an

elegant and rigorous approach can be done using the formalism of deformation quantiza-

tion [31]. See [3] for some arguments based on the latter approach.

A scheme to introduce gauge fields in string theory is by means of boundary inter-

actions or via boundary conditions of open strings, aside from through the Kaluza-Klein

compactifications in type II or heterotic string theories. With a compact notation, the

– 6 –
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open or closed string action reads as1

S =
1

4πα′

∫

Σ
|dX|2 −

∫

Σ
B −

∫

∂Σ
A, (2.9)

where X : Σ → M is a map from an open or closed string worldsheet Σ to a target

spacetime M and B(Σ) = X∗B(M) and A(∂Σ) = X∗A(M) are pull-backs of spacetime

fields to the worldsheet Σ and the worldsheet boundary ∂Σ, respectively.

The string action (2.9) respects the following local symmetries.

(I) Diff(M)-symmetry:

X → X ′ = X ′(X) ∈ Diff(M) (2.10)

and the corresponding transformations of target fields B and A including also a target

metric (hidden) in the first term of eq. (2.9).

(II) Λ-symmetry:

(B, A)→ (B − dΛ, A+ Λ) (2.11)

where the gauge parameter Λ is a one-form in M . A simple application of Stokes’

theorem immediately verifies the symmetry (2.11). Note that the Λ-symmetry is

present only when B 6= 0. When B = 0, the symmetry (2.11) is reduced to A →
A+ dλ, which is the ordinary U(1) gauge symmetry.

The above two local symmetries in string theory must also be realized as the symmetries

in low energy effective theory. We well understand the root of the symmetry (2.10) since the

string action (2.9) describes a gravitational theory in target spacetime. The diffeomorphism

symmetry (2.10) certainly signifies the emergence of gravity in the target space M . A

natural question is then what is a root of the Λ-symmetry (2.11).

Unfortunately, as far as we know, there has been no serious investigation about a

physical consequence of the symmetry (2.11). As a provoking comment, let us first point

out that the Λ-symmetry (2.11) is as large as the Diff(M)-symmetry (2.10) (supposing that

the rank of B is equal to the dimension of M) and is present only when B 6= 0, so a stringy

symmetry by nature. Indeed this is a broad hint that there will be a radical change of

physics when B 6= 0 — the new physics due to the θ-deformation in the table 1.

To proceed with a general context, let us first discuss a geometrical interpretation of

the Λ-symmetry without specifying low energy effective theories. Suppose that the two-

form B ∈ Λ2(M) is closed in M , i.e., dB = 0, and nondegenerate, i.e., nowhere vanishing

in M .2 One can then regard the two-form B as a symplectic structure on M and the

pair (M,B) as a symplectic manifold. The symplectic geometry is a less intuitive type of

1Although we will focus on the open string theory, our arguments in this section also hold for a closed

string theory where the string worldsheet Σ is a compact Riemann surface without boundary, so the last

term in eq. (2.9) is absent.
2In string theory, H = dB ∈ Λ3(M) is not necessarily zero. We don’t know much about this case, so

we will restrict to the symplectic case. But the connection with the generalized geometry, to be shortly

discussed later, might be helpful to understand more general cases.

– 7 –
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geometry but it should be familiar with classical mechanics, especially, the Hamiltonian

mechanics [32] and, more prominently, quantum mechanics.

The symplectic geometry respects an important property, known as the Darboux the-

orem [33], stating that every symplectic manifold of the same dimension is locally indis-

tinguishable. More precisely, let (M,ω) be a symplectic manifold. Then in a neighbor-

hood of each P ∈ M , there is a local coordinate chart in which ω is a constant, i.e.,

(M,ω) ∼= (R2n,
∑
dqi ∧ dpi). For our purpose, we will use its refined version - the Moser

lemma [34] - describing a cohomological condition for two symplectic structures to be equiv-

alent. Given two-forms ω and ω′ such that [ω] = [ω′] ∈ H2(M) and ωt = ω + t(ω′ − ω)

is symplectic ∀t ∈ [0, 1], then there exists a diffeomorphism φt : M → M such that

φ∗t (ωt) = ω. This implies that all ωt are related by coordinate transformations generated

by a vector field Xt satisfying

ιXtωt +A = 0 (2.12)

where ω′ − ω = dA. In terms of local coordinates, there always exists a coordinate trans-

formation φ1 whose pullback maps ω′ = ω + dA to ω, i.e., φ1 : y 7→ x = x(y) so that

∂xα

∂ya

∂xβ

∂yb
ω′

αβ(x) = ωab(y). (2.13)

The Moser lemma (2.13) stating that the symplectic manifolds (M,ω0) and (M,ω1)

are strongly isotopic is a global statement and will be applied to our problem as follows.

For a symplectic manifold (M,ω1 = B + F ) where F = dA, by the Darboux theorem, one

can always find a local coordinate chart (U ; y1, · · · , y2n) centered at p ∈ M and valid on

the neighborhood U such that ω0(p) = 1
2Babdy

a ∧ dyb where Bab is a constant symplectic

matrix of rank 2n. Then there are two symplectic structures on U ; the given ω1 = B + F

and ω0 = B. Consider a smooth family ωt = ω0 + t(ω1 − ω0) of symplectic forms joining

ω0 to ω1. Now the Moser lemma (2.13) implies that there exists a global diffeomorphism

φ : M×R→M such that φ∗t (ωt) = ω0, 0 ≤ t ≤ 1. If there exists such a diffeomorphism, in

terms of the associated time-dependent vector field Xt ≡ dφt

dt ◦ φ−1
t , one would have for all

0 ≤ t ≤ 1 that LXtωt +
dωt

dt = 0 which can be reduced to eq. (2.12). One can pointwise solve

the Moser’s equation (2.12) to obtain a unique smooth family of vector fields Xt, 0 ≤ t ≤ 1,

generating the global diffeomorphism φt satisfying dφt

dt = Xt ◦φt. So everything boils down

to solving the Moser’s equation (2.12) for Xt.

First one may solve the equation (2.12) at t → 0 to determine X0 = X0(y) on U

in terms of the Darboux coordinates ya and extend to all 0 ≤ t ≤ 1 by integration [35].

After integration, one can find a local isotopy φ : U × [0, 1] → M with φ∗t (ωt) = ω0 for

all t ∈ [0, 1]. Let us denote the resulting coordinate transformation φ1(y) on U generated

by the vector field X1 as xa(y) = ya +Xa
1 (y). (Compare the result with eq. (2.22) where

Xa
1 (y) := θabÂb(y).) This is the result we want to get from the data (M,ω1 = B + F )

by performing a coordinate transformation (2.13) onto a local Darboux chart. Therefore

sometimes we will simply refer the Darboux theorem to eq. (2.13) in a loose sense as long

as the physical meaning is clear.

The string action (2.9) indicates that, when B 6= 0, its natural group of symme-

tries includes not only the diffeomorphism (2.10) in Riemannian geometry but also the

– 8 –
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(I) Riemannian geometry (II) Symplectic geometry

Riemannian manifold (M,g): Symplectic manifold (M,ω):

M a smooth manifold M a smooth manifold

and g : TM ⊗ TM → R and ω ∈ Λ2(M)

a nondegenerate symmetric bilinear form a nondegenerate closed 2-form, i.e., dω = 0

Equivalence principle: Darboux theorem:

Locally, (M,g) ∼= (R2n,
∑
dxµ ⊗ dxµ) Locally, (M,ω) ∼= (R2n,

∑
dqi ∧ dpi)

Table 2. Riemannian geometry vs. Symplectic geometry.

Λ-symmetry (2.11) in symplectic geometry. According to the Darboux theorem (precisely,

the Moser lemma stated above), the local change of symplectic structure due to the Λ-

symmetry (2.11) (or the B-field transformation) can always be translated into a diffeomor-

phism symmetry as in eq. (2.13). This fact implies that the Λ-symmetry (2.11) should be

considered as a par with diffeomorphisms. It turns out [3] that the Darboux theorem in

symplectic geometry plays the same role as the equivalence principle in general relativity

for the geometrization of the electromagnetic force. These geometrical structures inherent

in the string action (2.9) are summarized below.

Therefore we need a generalized geometry when B 6= 0 which treats both Riemannian

geometry and symplectic geometry on equal footing.3 Such kind of generalized geometry

was introduced by N. Hitchin [4] in 2002 and further developed by M. Gualtieri and G. R.

Cavalcanti [5]. Generalized complex geometry unites complex and symplectic geometries

such that it interpolates between a complex structure J and a symplectic structure ω by

viewing each as a complex (or symplectic) structure J on the direct sum of the tangent

and cotangent bundle E = TM ⊕ T ∗M . A generalized complex structure J : E → E is a

generalized almost complex structure, satisfying J 2 = −1 and J ∗ = −J , whose sections

are closed under the Courant bracket4

[X + ξ, Y + η]C = [X,Y ] + LXη − LY ξ −
1

2
d
(
ιXη − ιY ξ

)
, (2.14)

where LX is the Lie derivative along the vector field X and d (ι) is the exterior (interior)

product.

3A Riemannian geometry is defined by a pair (M, g) where the metric g encodes all geometric infor-

mations while a symplectic geometry is defined by a pair (M, ω) where the 2-form ω encodes all. See the

table 2. A basic concept in Riemannian geometry is a distance defined by the metric. One may identify

this distance with a geodesic worldline of a “particle” moving in M . On the contrary, a basic concept in

symplectic geometry is an area defined by the symplectic structure. One may regard this area as a minimal

worldsheet swept by a “string” moving in M . Amusingly, the Riemannian geometry is probed by particles

while the symplectic geometry would be probed by strings. But we know that a Riemannian geometry (or

gravity) is emergent from strings ! This argument, though naive, glimpses the reason why the θ-deformation

in the table 1 goes parallel to the α′-deformation.
4When H = dB is not zero, the Courant bracket on E is ‘twisted’ by the real, closed 3-form H in the

following way

[X + ξ, Y + η]H = [X + ξ, Y + η]C + ιY ιXH.

See [5] for more details, in particular, a relation to gerbes.
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An important point in generalized geometry is that the symmetries of E, i.e., the

endomorphisms of E (the group of orthogonal Courant automorphisms of E), are the com-

position of a diffeomorphism of M and a B-field transformation defined by eB(X + ξ) =

X + ξ + ιXB for any X + ξ ∈ E, where B is an arbitrary closed 2-form. This B-field

transformation can be identified with the Λ-symmetry (2.11) as follows. Let (M,B) be a

symplectic manifold whereB = dξ, locally, by the Poincaré lemma. The Λ-symmetry (2.11)

can then be understood as a shift of the canonical 1-form, ξ → ξ − Λ, which is the B-field

transformation with the identification Λ = −ιXB. With this notation, the B-field trans-

formation is equivalent to B → B + LXB since dB = 0. We thus see that the generalized

complex geometry provides a natural geometric framework to incorporate simultaneously

the two local symmetries in eq. (2.10) and eq. (2.11). That is,

Courant automorphism = Diff(M) ⊕ Λ− symmetry. (2.15)

One can introduce a generalized metric on TM⊕T ∗M by reducing the structure group

U(n, n) to U(n) × U(n). It turns out [5] that the metric on TM ⊕ T ∗M compatible with

the natural pairing 〈X+ξ, Y +η〉 = 1
2

(
ξ(Y )+η(X)

)
is equivalent to a choice of metric g on

TM and 2-form B.5 We now introduce a DBI “metric” g+ κB : TM → T ∗M which maps

X to ξ = (g+κB)(X). Consider the Courant automorphism (2.15) which is a combination

of a B-field transformation followed by a diffeomorphism φ : M →M

X + ξ → φ−1
∗ X + φ∗(ξ + ιXB). (2.16)

The above action transforms the DBI metric g + κB according to

g + κB → φ∗
(
g + κ(B + LXB)

)
. (2.17)

The Moser lemma (2.13) then implies that there always exists a diffeomorphism φ such

that φ∗(B + LXB) = B. In terms of local coordinates φ : y → x = x(y), eq. (2.17) then

reads as

(g + κB′)αβ(x) =
∂ya

∂xα

(
g′ab(y) + κBab(y)

) ∂yb

∂xβ
(2.18)

where B′ = B + LXB and

g′ab(y) =
∂xα

∂ya

∂xβ

∂yb
gαβ(x). (2.19)

One can immediately see that the diffeomorphism (2.18) between two different DBI met-

rics is a direct result of the Moser lemma (2.13). We will see that the identity (2.18)

leads to a remarkable relation between symplectic (or Poisson) geometry and complex (or

Riemannian) geometry.

5A reduction to U(n)×U(n) is equivalent to the existence of two generalized almost complex structures

J1,J2 where J1 and J2 commute and a generalized Kähler metric G = −J1J2 is positive definite. This

structure is known as the generalized Kähler or bi-Hermitian structure [5]. Any generalized Kähler metric

G takes the form

G =

 
−g−1B g−1

g − Bg−1B Bg−1

!
=

 
1 0

B 1

! 
0 g−1

g 0

! 
1 0

−B 1

!
,

which is the B-field transformation of a bare Riemannian metric g as long as the 2-form B is closed.

Interestingly the metric part g−Bg−1B : TM → T ∗M in the generalized Kähler metric G is exactly of the

same form as the open string metric in a B-field [22].
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2.3 DBI action as a generalized geometry

We observed that the presence of a nowhere vanishing (closed) 2-form B in spacetime M

calls for a generalized geometry, where the two local symmetries in eq. (2.15) are treated

on equal footing. A crucial point in the generalized geometry is that the space Λ2(M) of

closed 2-forms in M appears as a part of spacetime geometry, as embodied in eq. (2.18),

in addition to the Diff(M) symmetry being a local isometry of Riemannian geometry. This

suggests that, when B 6= 0, it is possible to realize a completely new geometrization of

a physical force based on symplectic geometry rather than Riemannian geometry. So a

natural question is: What is the force ?

We will show that the force is indeed the electromagnetic force and there exists a

novel form of the equivalence principle, i.e., the Darboux theorem, for the geometrization

of the electromagnetism. In other words, eq. (2.13) implies that there always exists a

coordinate transformation to locally eliminate the electromagnetic force as long as the

D-brane worldvolume M supports a symplectic structure B, i.e., M becomes a NC space.

Furthermore, U(1) gauge transformations in NC spacetime become a ‘spacetime’ symmetry

rather than an ‘internal’ symmetry, which already suggests that the electromagnetism in

NC spacetime can be realized as a geometrical property of spacetime like gravity.

Let us now discuss the physical consequences of the generalized geometry, especially,

the implications of the Λ-symmetry (2.11) in the context of the low energy effective theory

of open strings in the background of an NS-NS 2-form B. We will use the effective field

theory description in order to broadly illuminate what kind of new physics arises from a

field theory in the B-field background, i.e., a NC field theory. It will provide a clear-cut

picture about the new physics though it is not quite rigorous. In the next section we will

put the arguments here on a firm foundation using the background independent formulation

of NC gauge theory.

A low energy effective field theory deduced from the open string action (2.9) describes

an open string dynamics on a (p + 1)-dimensional D-brane worldvolume. The dynamics

of D-branes is described by open string field theory whose low energy effective action is

obtained by integrating out all the massive modes, keeping only massless fields which are

slowly varying at the string scale κ ≡ 2πα′. For a Dp-brane in closed string background

fields, the action describing the resulting low energy dynamics is given by

S =
2π

gs(2πκ)
p+1
2

∫
dp+1x

√
det(g + κ(B + F )) +O(

√
κ∂F, · · · ), (2.20)

where F = dA is the field strength of U(1) gauge fields. The DBI action (2.20) respects

the two local symmetries, (2.10) and (2.11), as expected.

(I) Diff(M)-symmetry: Under a local coordinate transformation φ−1 : xα 7→ x′α where

worldvolume fields also transform in usual way

(B′ + F ′)ab(x
′) =

∂xα

∂x′a
∂xβ

∂x′b
(B + F )αβ(x) (2.21)

together with the metric transformation (2.6), the action (2.20) is invariant.
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(II) Λ-symmetry: One can easily see that the action (2.20) is invariant under the trans-

formation (2.11) with any 1-form Λ.

Note that ordinary U(1) gauge symmetry is a special case of eq. (2.11) where the

gauge parameter Λ is exact, namely, Λ = dλ, so that B → B, A → A + dλ. Indeed the

U(1) gauge symmetry is a diffeomorphism (known as a symplectomorphism) generated by

a vector field X satisfying LXB = 0. We see here that the gauge symmetry becomes a

‘spacetime’ symmetry rather than an ‘internal’ symmetry, as well as an infinite-dimensional

and non-Abelian symmetry when B is nowhere vanishing. This fact unveils a connection

between NC gauge fields and spacetime geometry.

The geometrical data of D-branes, that is a derived category in mathematics, are spec-

ified by the triple (M,g,B) where M is a smooth manifold equipped with a Riemannian

metric g and a symplectic structure B. One can see from the action (2.20) that the data

come only into the combination (M,g,B) = (M,g + κB), which is the DBI metric (2.17)

to embody a generalized geometry. In fact the ‘D-manifold’ defined by the triple (M,g,B)

describes the generalized geometry [4, 5] which continuously interpolates between a sym-

plectic geometry (|κBg−1| ≫ 1) and a Riemannian geometry (|κBg−1| ≪ 1). An important

point is that the electromagnetic force F should appear in the gauge invariant combination

Ω = B + F due to the Λ-symmetry (2.11), as shown in eq. (2.20). Then the Darboux

theorem (2.13) with the identification ω′ = Ω and ω = B states that one can “always”

eliminate the electromagnetic force F by a suitable local coordinate transformation as far

as the 2-form B is nondegenerate. Therefore the Darboux theorem in symplectic goemetry

bears an analogy with the equivalence principle in section 2.1.

Let us represent the local coordinate transform φ : y 7→ x = x(y) in eq. (2.13) as

follows

xa(y) ≡ ya + θabÂb(y), (2.22)

where θab is a Poisson structure on M , i.e., θab =
(

1
B

)ab
.6 This particular form of expression

has been motivated by the fact that ω′
ab(x) = ωab(y) in the case of F = dA = 0, so the

second term in eq. (2.22) should take care of the deformation of the symplectic structure

coming from F = dA. As was shown above, U(1) gauge transformations are generated by

a Hamiltonian vector field Xλ satisfying ιXλ
B + dλ = 0 and the action of Xλ on xa(y) is

given by

δxa(y) ≡ Xλ(xa) = {xa, λ}θ
= θab

(
∂bλ+ {Âb, λ}θ

)
, (2.23)

where the last expression presumes a constant θab. The above transformation will be

identified with the NC U(1) gauge transformation after a NC deformation, so Âa(y) turns

out to be NC gauge fields. The coordinates xa(y) in (2.22) will play a special role, since

they are background independent [23] as well as gauge covariant [36].

6A Poisson structure is a skew-symmetric, contravariant 2-tensor θ = θab∂a ∧∂b ∈
V2

TM which defines

a skew-symmetric bilinear map {f, g}θ = 〈θ, df ⊗ dg〉 = θab∂af∂bg for f, g ∈ C∞(M), so-called, a Poisson

bracket. So we get θab(y) = {ya, yb}θ.
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We showed before that the local equivalence (2.13) between symplectic structures

brings in the diffeomorphic equivalence (2.18) between two different DBI metrics, which in

turn leads to a remarkable identity between DBI actions [37]:

∫
dp+1x

√
det
(
g(x) + κ(B + F )(x)

)
=

∫
dp+1y

√
det
(
h(y) + κB(y)

)
. (2.24)

Note that gauge field fluctuations now appear as an induced metric on the brane given by

hab(y) =
∂xα

∂ya

∂xβ

∂yb
gαβ(x). (2.25)

The identity (2.24) can also be obtained by considering the coordinate transformations (2.6)

and (2.21) satisfying (B′ + F ′)ab(x
′) = Bab(x

′). This kind of coordinate transformation

always exists thanks to the Darboux theorem (2.13). Note that all these underlying struc-

tures are very parallel to general relativity (see section 2.1). For instance, considering the

fact that a diffeomorphism φ ∈ Diff(M) acts on E as X + ξ 7→ φ−1
∗ X + φ∗ξ, we see that

the covariant coordinates xa(y) in eq. (2.22) correspond to the locally inertial coordinates

ξα(x) in eq. (2.1) while the coordinates ya play the same role as the laboratory Cartesian

coordinates xµ in eq. (2.3).

We will now discuss important physical consequences we can get from the iden-

tity (2.24).

(1) The identity (2.24) says that gauge field fluctuations on a rigid D-brane are equivalent

to dynamical fluctuations of the D-brane itself without gauge fields. Indeed this

picture is omnipresent in string theory with the name of open-closed string duality

although it is not formulated in this way.

(2) The identity (2.24) cannot be true when B = 0, i.e., spacetime is commutative. In

this case the Λ-symmetry is reduced to ordinary U(1) gauge symmetry. The gauge

symmetry has no relation to a diffeomorphism symmetry and it is just an internal

symmetry rather than a spacetime symmetry.

(3) Let us consider a curved D-brane in a constant B-field background whose shape is

described by an induced metric hab. We may consider the right-hand side of eq. (2.24)

with a constant Bconst as the corresponding DBI action. The induced metric hab can

be represented as in eq. (2.25) with a flat metric gαβ(x) = δαβ . The nontrivial shape

of the curved D-brane described by the metric hab can then be translated in the left-

hand side of eq. (2.24) into a nontrivial condensate of gauge fields on a flat D-brane

given by

Bab(x) =
(
Bconst + Fback(x)

)
ab
. (2.26)

The converse is also suggestive. Any symplectic 2-form on a noncompact space can

be written as the form (2.26) where Bconst is an asymptotic value of the 2-form

Bab(x), i.e., Fback(x) → 0 at |x| → ∞. And the gauge field configuration Fback(x)

can be interpreted as a curved D-brane manifold in the Bconst background. Thus
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we get an intriguing result that a curved D-brane with a canonical symplectic 2-

form (or a constant Poisson structure) is equivalently represented as a flat D-brane

with an inhomogeneous symplectic 2-form (or a nonconstant Poisson structure). Our

argument here also implies a fascinating result that Bconst, a uniform condensation of

gauge fields in a vacuum, would be a ‘source’ of flat spacetime. Later we will return

to this point with an elaborated viewpoint.

(4) One can expand the right-hand side of eq. (2.24) around the background B, arriving

at the following result [37]

∫
dp+1y

√
det
(
h(y) + κB(y)

)

=

∫
dp+1y

√
det
(
κB
)(

1 +
1

4κ2
gacgbd{xa, xb}θ{xc, xd}θ + · · ·

)
(2.27)

where {xa, xb}θ is a Poisson bracket (defined in footnote 6) between the covariant

coordinates (2.22). For constant B and g, eq. (2.27) is equivalent to the IKKT

matrix model [38] after a quantization à la Dirac, i.e., {xa, xb}θ ⇒ −i[x̂a, x̂b]⋆, which

is believed to describe the nonperturbative dynamics of the type IIB string theory.

Furthermore one can show that eq. (2.27) reduces to a NC gauge theory, using the

relation

[x̂a, x̂b]⋆ = −i
(
θ(F̂ −B)θ

)ab
(2.28)

where the NC field strength is given by

F̂ab = ∂aÂb − ∂bÂa − i[Âa, Âb]⋆. (2.29)

Therefore the identity (2.24) is, in fact, the Seiberg-Witten equivalence between com-

mutative and NC DBI actions [22].

(5) It was explicitly demonstrated in [3, 12] how NC gauge fields manifest themselves as a

spacetime geometry, as eq. (2.27) glimpses this geometrization of the electromagnetic

force. Surprisingly it turns out [12] that self-dual electromagnetism in NC spacetime

is equivalent to self-dual Einstein gravity. (We rigorously show this equivalence in

appendix A.) For example, U(1) instantons in NC spacetime are actually gravitational

instantons [11]. This picture also reveals a beautiful geometrical structure that self-

dual NC electromagnetism perfectly fits with the twistor space describing curved

self-dual spacetime. The deformation of symplectic (or Kähler) structure of a self-

dual spacetime due to the fluctuation of gauge fields appears as that of complex

structure of the twistor space.

(6) All these properties appearing in the geometrization of electromagnetism may be

summarized in the context of derived category. More closely, if M is a complex

manifold whose complex structure is given by J , we see that dynamical fields in

the left-hand side of eq. (2.24) act only as the deformation of symplectic structure

Ω(x) = B+F (x) in the triple (M,J,Ω), while those in the right-hand side of eq. (2.24)
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appear only as the deformation of complex structure J ′(y) in the triple (M ′, J ′, B)

through the metric (2.25). In this notation, the identity (2.24) can thus be written

as follows

(M,J,Ω) ∼= (M ′, J ′, B). (2.30)

The equivalence (2.30) is very reminiscent of the homological mirror symmetry [39],

stating the equivalence between the category of A-branes (derived Fukaya category

corresponding to the triple (M,J,Ω)) and the category of B-branes (derived category

of coherent sheaves corresponding to the triple (M ′, J ′, B)).

There is a subtle but important difference between the Riemannian geometry and

symplectic geometry. Strictly speaking, the equivalence principle in general relativity is

a point-wise statement at any given point P while the Darboux theorem in symplectic

geometry is defined in an entire neighborhood around P . This is the reason why there

exist local invariants, e.g., curvature tensors, in Riemannian geometry while there is no

such kind of local invariant in symplectic geometry.7 This raises a keen puzzle about how

Riemannian geometry is emergent from symplectic geometry though their local geometries

are in sharp contrast to each other.

We suggest a following resolution. A symplectic structure B is nowhere vanishing.

In terms of physicist language, this means that there is an (inhomogeneous in general)

condensation of gauge fields in a vacuum, i.e.,

〈Bab(x)〉vac = θ−1
ab (x). (2.31)

Let us consider a constant symplectic structure for simplicity. The background (2.31) then

corresponds to a uniform condensation of gauge fields in a vacuum given by 〈A0
a〉vac =

−Baby
b. It will be suggestive to rewrite the covariant coordinates (2.22) as (actually to

invoke a renowned Goldstone boson ϕ = 〈ϕ〉+ h)8

xa(y) = θab
(
−〈A0

b〉vac + Âb(y)
)
. (2.32)

This naturally suggests some sort of spontaneous symmetry breaking where ya are vacuum

expectation values of xa(y), specifying the background (2.31) as usual, and Âb(y) are

fluctuating (dynamical) coordinates (fields).

7If the equivalence principle held over an entire neighborhood of a point P , curvature tensors would

identically vanish. Indeed the existence of local invariants such as Riemann curvature tensors results from

the implicit assumption that it is always possible to discriminate total gravitational fields between two

arbitrary nearby spacetime points (see section 2.1). This exhibits a sign that there will be a serious conflict

between the equivalence principle and the Heisenberg’s uncertainty principle. In this perspective, it seems

like a vain attempt to mix with water and oil to try to quantize Einstein gravity itself, which is based on

Riemann curvature tensors of which the equivalence principle is in the heart.
8In this respect, it would be interesting to quote a recent comment of A. Zee [40]: “The basic equation

for the graviton field has the same form gµν = ηµν + hµν . This naturally suggests that ηµν = 〈gµν〉 and

perhaps some sort of spontaneous symmetry breaking.” We will show later that this pattern is not an

accidental happening.
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Note that the vacuum (2.31) picks up a particular symplectic structure, introducing a

typical length scale ||θ|| = l2nc. This means that the Λ-symmetry G in eq. (2.11) is spon-

taneously broken to the symplectomorphism H preserving the vacuum (2.31) [3]. The Λ-

symmetry is the local equivalence between two symplectic structures belonging to the same

cohomology class. But the transformation in eq. (2.11) will not preserve the vacuum (2.31)

except its subgroup generated by the gauge parameter Λ = dλ which is equal to the NC

U(1) gauge symmetry (2.23).9 So the deformations of the vacuum manifold (2.31) by NC

gauge fields take values in the coset space G/H, which is equivalent to the gauge orbit

space of NC gauge fields or the physical configuration space of NC electromagnetism [3].

The spontaneous symmetry breaking also explains why only ordinary U(1) gauge symme-

try is observed at large scales ≫ lnc. We argued in [3] that the spontaneous symmetry

breaking (2.31) will explain why Einstein gravity, carrying local curvature invariants, can

emerge from symplectic geometry.10 In other words, Riemannian geometry would simply

be a result of coarse-graining of symplectic geometry at the scales & lnc like as the Einstein

gravity in string theory where the former simply corresponds to the limit α′ → 0.

3 Emergent gravity

Sometimes a naive reasoning also suggests a road in mist. What is quantum gravity

? Quantum gravity means to quantize gravity. Gravity, according to Einstein’s general

relativity, is the dynamics of spacetime geometry which is usually described by a Hausdorff

space M while quantization à la Dirac will require a phase space structure of spacetime

as a prequantization. The phase space structure of spacetime M can be specified by

introducing a symplectic structure ω on M . Therefore our naive reasoning implies that

the pair (M,ω), a symplectic manifold, might be a proper starting point for quantum

gravity, where fluctuations of spacetime geometry would be fluctuations of the symplectic

structure ω and the quantization of symplectic manifold (M,ω) could be performed via the

deformation quantization à la Kontsevich [31].11 This state of art is precisely the situation

we have encountered in the previous section for the generalized geometry emerging from

the string theory (2.9) when B 6= 0.

A symplectic structure B = 1
2Babdy

a ∧ dyb defines a Poisson structure θab ≡ (B−1)ab

on M (see footnote 6) where a, b = 1, . . . , 2n. From now on, we will refer to a constant

symplectic structure unless otherwise specified. The Dirac quantization with respect to

the Poisson structure θab then leads to a quantum phase space (1.3). And the argument in

9We will show later that a constant shift of the symplectic structure, B → B′ = B + δB, does not affect

any physics, so a symmetry of the theory, although it readjusts the vacuum (2.31).
10Here we are not saying that symplectic geometry is missing an important ingredient. Instead our

physics simply requires to distinguish the background (nondynamical) and fluctuating (dynamical) parts of

a symplectic structure. This will be a typical feature appearing in a background independent theory.
11This quantization scheme is different from the usual canonical quantization of gravity where metrics g

and their conjugates πg constitute fundamental variables for quantization, i.e., a phase space (g, πg). We

believe that the conventional quantization scheme is much like an escapade to quantize an elasticity of solid

(e.g., sound waves) or hydrodynamics and it is supposed to be failed due to the choice of wrong variables

for quantization, since it turns out that Riemannian metrics are not fundamental variables but collective

(or composite) variables.
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section 2.3 also explains why a condensation of gauge fields in a vacuum, eq. (2.31), gives

rise to the NC spacetime (1.3), i.e.,

〈Bab〉vac = (θ−1)ab ⇔ [ya, yb]⋆ = iθab ⇔ [ai, a
†
j ] = δij , (3.1)

where ai and a†j with i, j = 1, · · · , n are annihilation and creation operators, respectively,

in the Heisenberg algebra of an n-dimensional harmonic oscillator.

It is a well-known fact from quantum mechanics that the representation space of NC

R2n is given by an infinite-dimensional, separable Hilbert space

H = {|~n〉 ≡ |n1, · · · , nn〉, ni = 0, 1, · · · } (3.2)

which is orthonormal, i.e., 〈~n|~m〉 = δ~n~m and complete, i.e.,
∑∞

~n=0 |~n〉〈~n| = 1. Note that

every NC space can be represented as a theory of operators in the Hilbert space H, which

consists of NC ⋆-algebra Aθ like as a set of observables in quantum mechanics. Therefore

any field Φ̂ ∈ Aθ in the NC space (3.1) becomes an operator acting on H and can be

expanded in terms of the complete operator basis

Aθ = {|~n〉〈~m|, ni,mj = 0, 1, · · · }, (3.3)

that is,

Φ̂(y) =
∑

~n,~m

Φ~n~m|~n〉〈~m|. (3.4)

One may use the ‘Cantor diagonal method’ to put the n-dimensional positive integer lat-

tice in H into a one-to-one correspondence with the infinite set of natural numbers (i.e.,

1-dimensional positive integer lattice): |~n〉 ↔ |n〉, n = 1, · · · , N → ∞. In this one-

dimensional basis, eq. (3.4) can be relabeled as the following form

Φ̂(y) =
∞∑

n,m=1

Φnm |n〉〈m|. (3.5)

One can regard Φnm in eq. (3.5) as components of an N × N matrix Φ in the N → ∞
limit. We then get the following relation [1, 2, 14]:

Any field on NC R2n ∼= N ×N matrix at N →∞. (3.6)

If Φ̂ is a real field, then Φ should be a Hermitian matrix. The relation (3.6) means that a

NC field can be regarded as a master field of a large N matrix.

We have to point out that our statements in the previous section about emergent

geometries should be understood in the ‘semi-classical’ limit where the Moyal-Weyl com-

mutator, −i[f̂ , ĝ]⋆, can be reduced to the Poisson bracket {f, g}θ. Now the very notion of

a point in NC spaces such as eq. (3.1) is doomed but replaced by a state in H. So the

usual concept of geometry based on smooth manifolds would be replaced by a theory of

operator algebra, e.g., NC geometry à la Connes [41], or a theory of deformation quantiza-

tion à la Kontsevich [31]. Thus our next mission is how to lift our previous ‘semi-classical’

arguments to the full NC world. A nice observation to do this is that a NC algebra Aθ
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generated by the NC coordinates (1.3) is mathematically equivalent to the one generated

by the NC phase space (1.1).

In classical mechanics, the set of possible states of a system forms a Poisson manifold

and the observables that we want to measure are smooth functions in C∞(M), forming

a commutative (Poisson) algebra. In quantum mechanics, the set of possible states is a

Hilbert space H and the observables are self-adjoint operators acting on H, forming a

NC ⋆-algebra. Pleasingly, there are two paths to represent the NC algebra. One is the

matrix mechanics where the observables are represented by matrices in an arbitrary basis

in H. The other is the deformation quantization where, instead of building a Hilbert space

from a Poisson manifold and associating an algebra of operators to it, the quantization is

understood as a deformation of the algebra of classical observables. We are only concerned

with the algebra to deform the commutative product in C∞(M) to a NC, associative

product. Two approaches have one to one correspondence through the Weyl-Moyal map [1].

Similarly, there are two different realizations of the NC algebra Aθ. One is the “matrix

representation” we already introduced in eq. (3.6). The other is to map the NC ⋆-algebra

Aθ to a differential algebra using the inner automorphism, a normal subgroup of the full

automorphism group, in Aθ. We call it “geometric representation”, which will be used

in section3.2. The geometric representation is quite similar to the dynamical evolution

of a system in the Heisenberg picture in which the time-evolution of dynamical variables

is defined by the inner automorphism of the NC ⋆-algebra generated by the coordinates

in eq. (1.1). Of course, the two representations of a NC field theory should describe an

equivalent physics. Now we will apply these two pictures to NC field theories to see what

the equivalence between them implies.

3.1 Matrix representation

First we apply the matrix representation (3.6) to NC U(1) gauge theory on RD = Rd
C×R2n

NC

where the d-dimensional commutative spacetime Rd
C will be taken with either Lorentzian

or Euclidean signature.12 We will be brief since most technical details could be found

in [14]. We decompose D-dimensional coordinates XM (M = 1, · · · ,D) into d-dimensional

commutative ones, denoted as zµ (µ = 1, · · · , d), and 2n-dimensional NC ones, denoted

as ya (a = 1, · · · , 2n), satisfying the relation (3.1). Likewise, D-dimensional gauge fields

ÂM (z, y) are also decomposed in a similar way

D̂M = ∂M − iÂM (z, y) ≡ (D̂µ, D̂a)(z, y)

= (D̂µ,−iκBabΦ̂
b)(z, y) (3.7)

12The generalized Darboux theorem was proved in [5], stating that any m-dimensional generalized com-

plex manifold, via a diffeomorphism and a B-field transformation, looks locally like the product of an open

set in C
k with an open set in the standard symplectic space (R2m−2k ,

P
dqi ∧ dpi). The integer k is

called the type of the generalized complex structure, which is not necessarily constant but may rather vary

throughout the manifold — the jumping phenomenon. The type can jump up, but always by an even

number. Here we will consider the situation where the type k is constant over the manifold.
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where D̂µ = ∂µ − iÂµ(z, y) are covariant derivatives along Rd
C and Ψ̂a(z, y) ≡

κBabΦ̂
b(z, y) = Babx̂

b(z, y) are adjoint Higgs fields of mass dimension defined by the co-

variant coordinates (2.22).

Here, the matrix representation means that NC U(1) gauge fields Ξ̂M (z, y) ≡
(Âµ, Ψ̂a)(z, y) are represented as N ×N matrices in the N →∞ limit as eq. (3.5), i.e.,

Ξ̂M (z, y) =

∞∑

n,m=1

(ΞM )nm(z) |n〉〈m|. (3.8)

Note that the N ×N matrices ΞM(z) = (Aµ,Ψa)(z) in eq. (3.8) are now regarded as gauge

and Higgs fields in U(N → ∞) gauge theory on d-dimensional commutative spacetime

Rd
C . One can then show that, adopting the matrix representation (3.8), the NC U(1)

gauge theory on Rd
C ×R2n

NC is “exactly” mapped to the U(N →∞) Yang-Mills theory on

d-dimensional spacetime Rd
C

SB = − 1

4g2
Y M

∫
dDX(F̂MN −BMN ) ⋆ (F̂MN −BMN)

= −(2πκ)
4−d
2

2πgs

∫
ddzTr

(
1

4
FµνF

µν +
1

2
DµΦaDµΦa − 1

4
[Φa,Φb]2

)
(3.9)

where the matrix BMN =

(
0 0

0 Bab

)
is the background symplectic 2-form (3.1) of rank 2n.

For notational simplicity, we have hidden all constant metrics in eq. (3.9). Otherwise, we

refer [14] for the general expression.

We showed before that U(1) gauge symmetry in NC spaces is actually a spacetime

symmetry (diffeomorphisms generated by X vector fields satisfying LXB = 0) where the

NC U(1) gauge transformation acts on the covariant derivatives in (3.7) as

D̂M → D̂′
M = Û(X) ⋆ D̂M ⋆ Û(X)−1 (3.10)

for any NC group element Û(X) ∈ U(1). Indeed the idea that NC gauge symmetries are

spacetime symmetries was discussed long ago by many people. An exposition of these

works can be found in [2]. The gauge transformation (3.10) can be represented in the

matrix representation (3.5). The gauge symmetry now acts as unitary transformations on

the Fock spaceH which is denoted as Ucpt(H). This NC gauge symmetry Ucpt(H) is so large

that Ucpt(H) ⊃ U(N) (N → ∞) [42]. The NC U(1) gauge transformations in eq. (3.10)

are now transformed into U(N) gauge transformations on Rd
C (where we complete Ucpt(H)

with U(N) in the limit N →∞) given by

(Dµ,Ψa)→ (Dµ,Ψa)
′ = U(z)(Dµ,Ψa)U(z)−1 (3.11)

for any group element U(z) ∈ U(N). Thus a NC gauge theory in the matrix representation

can be regarded as a large N gauge theory.

As was explained above, the equivalence bewteen a NC U(1) gauge theory in higher

dimensions and a large N gauge theory in lower dimensions is an exact map. What is the

physical consequence of this exact equivalence ?
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Indeed one can get a series of matrix models from the NC U(1) gauge theory (3.9).

For instance, the IKKT matrix model for d = 0 [38], the BFSS matrix model for d = 1 [43]

and the matrix string theory for d = 2 [44]. The most interesting case is that the 10-

dimensional NC U(1) gauge theory on R4
C × R6

NC is equivalent to the bosonic part of

4-dimensional N = 4 supersymmetric U(N) Yang-Mills theory, which is the large N gauge

theory of the AdS/CFT duality [24]. Note that all these matrix models or large N gauge

theories are a nonperturbative formulation of string or M theories. Therefore it should not

be so surprising that a D-dimensional gravity could be emergent from the d-dimensional

U(N → ∞) gauge theory, according to the large N duality or AdS/CFT correspondence

and thus from the D-dimensional NC gauge theory in eq. (3.9). We will show further

evidences that the action (3.9) describes a theory of (quantum) gravity.

A few remarks are in order.

(1) The equivalence (3.9) raises a far-reaching question about the renormalization prop-

erty of NC field theory. If we look at the first action in eq. (3.9), the theory su-

perficially seems to be non-renormalizable for D > 4 since the coupling constant

g2
Y M ∼ m4−D has a negative mass dimension. But this non-renormalizability appears

as a fake if we use the second action in eq. (3.9). The resulting coupling constant,

denoted as g2
d ∼ m4−d, in the matrix action (3.9) depends only on the dimension of

the commutative spacetime rather than the entire spacetime [14].

The change of dimensionality is resulted from the relationship (3.6) where all depen-

dence of NC coordinates appears as matrix degrees of freedom. An important point

is that the NC space (1.3) now becomes an n-dimensional positive integer lattice

(fibered n-torus Tn, but whose explicit dependence is mysteriously not appearing

in the matrix action (3.9)). Thus the transition from commutative to NC spaces

accompanies the mysterious cardinality transition à la Cantor from aleph-one (real

numbers) to aleph-null (natural numbers). Of course this transition is akin to that

from classical to quantum world in quantum mechanics. The transition from a con-

tinuum space to a discrete space should be radical even affecting the renormalization

property [45].

Actually the matrix regularization of a continuum theory is an old story, for in-

stance, a relativistic membrane theory in light-front coordinates (see, for example, a

review [46] and references therein). The matrix regularization of the membrane the-

ory on a Riemann surface of any genus is based on the fact that the symmetry group

of area-preserving diffeomorphisms can be approximated by U(N). This fact in turn

alludes that adjoint fields in U(N) gauge theory should contain multiple branes with

arbitrary topologies. In this sense it is natural to think of the matrix theory (3.9) as

a second quantized theory from the point of view of the target space [46].

(2) From the above construction, we know that the number of adjoint Higgs fields Φa is

equal to the rank of the B-field (3.1). Therefore the matrix theory in eq. (3.9) can

be defined in different dimensions by changing the rank of the B-field. This change

of dimensionality appears in the matrix theory as the ‘matrix T-duality’ (see section
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VI.A in [46]) defined by13

iDµ ⇄ Φa. (3.12)

Applying the matrix T-duality (3.12) to the action (3.9), on one hand, one can arrive

at the 0-dimensional IKKT matrix model (in the case of Euclidean signature) or the

1-dimensional BFSS matrix model (in the case of Lorentzian signature). On the other

hand, one can also go up to D-dimensional pure U(N) Yang-Mills theory given by

SC = − 1

4g2
Y M

∫
dDXTrFMNF

MN . (3.13)

Note that the B-field is now completely disappeared, i.e., the spacetime is commu-

tative. In fact the T-duality between eq. (3.9) and eq. (3.13) is an analogue of the

Morita equivalence on a NC torus stating that NC U(1) gauge theory with rational

θ = M/N is equivalent to an ordinary U(N) gauge theory [22].

(3) One may notice that the second action in eq. (3.9) can also be obtained by a dimen-

sional reduction of the action (3.13) from D-dimensions to d-dimensions. However

there is a subtle but important difference between these two.

A usual boundary condition for NC gauge fields in eq. (3.9) is that F̂MN → 0 at

|X| → ∞. So the following maximally commuting matrices

[Φa,Φb] = 0 ∼= Φa = diag(φa
1, · · · , φa

N ), ∀a (3.14)

could not be a vacuum solution of eq. (3.9) (see eq. (2.28)), while they could be for

the Yang-Mills theory dimensionally reduced from eq. (3.13). The vacuum solution

of eq. (3.9) is rather eq. (3.1).

A proper interpretation for the contrast will be that the flat space R2n in eq. (3.9) is

not a priori given but defined by (or emergent from) the background (3.1). (We will

show this fact later.) But, in eq. (3.13), a flat D-dimensional spacetime RD already

exists, so it is no longer needed to specify a background for the spacetime, contrary

to eq. (3.9). It was shown by Witten [47] that the low-energy theory describing

a system of N parallel Dp-branes in flat spacetime is the dimensional reduction of

N = 1, (9+1)-dimensional super Yang-Mills theory to (p + 1) dimensions. The

vacuum solution describing a condensation of N parallel Dp-branes in flat spacetime

is then given by eq. (3.14). So a natural inference is that the condensation of N

parallel Dp-branes in eq. (3.14) is described by a different class of vacua from the

background (3.1).

13One can change the dimensionality of the matrix model by any integer number by the matrix T-

duality (3.12) while the rank of the B-field can be changed only by an even number. Hence it is not

obvious what kind of background can explain the NC field theory with an odd number of adjoint Higgs

fields. A plausible guess is that there is a 3-form Cµνρ which reduces to the 2-form B in eq. (3.1) by a

circle compactification, so may be of M-theory origin. Unfortunately, we don’t know how to construct a

corresponding NC field theory with the 3-form background, although very recent developments seem to go

toward that direction.
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3.2 Geometric representation

Now we move onto the geometric representation of a NC field theory. A crux is that

translations in NC directions are an inner automorphism of the NC ⋆-algebra Aθ generated

by the coordinates in eq. (3.1),

e−ikaBaby
b

⋆ f̂(z, y) ⋆ eik
aBaby

b

= f̂(z, y + k) (3.15)

for any f̂(z, y) ∈ Aθ. Its infinitesimal form defines the inner derivation (1.4) of the algebra

Aθ. It might be worthwhile to point out that the inner automorphism (3.15) is nontrivial

only in the case of a NC algebra. In other words, commutative algebras do not possess any

inner automorphism. In addition, eq. (3.15) clearly shows that (finite) space translations

are equal to (large) gauge transformations.14 It is a generic feature in NC spaces that an

internal symmetry of physics turns into a spacetime symmetry, as we already observed in

eq. (2.23).

If electromagnetic fields are present in the NC space (3.1), covariant objects, e.g.,

eq. (3.7), under the NC U(1) gauge transformation should be introduced. As an innocent

generalization of the inner automorphism (3.15), let us consider the following “dynamical”

inner automorphism

ek
M bDM ⋆ f̂(X) ⋆ e−kM bDM = Ŵ (X,Ck) ⋆ f̂(X + k) ⋆ Ŵ (X,Ck)−1 (3.17)

where

ek
M bDM ≡ Ŵ (X,Ck) ⋆ e

kM∂M (3.18)

with ∂M ≡ (∂µ,−iBaby
b) and we used eqs.(3.15) and (3.16) which can be summarized with

a compact form

ek
M∂M ⋆ f̂(X) ⋆ e−kM∂M = f̂(X + k). (3.19)

To understand eq. (3.17), first notice that ek
M bDM is a covariant object under NC U(1)

gauge transformations according to eq. (3.10) and so one can get

ek
M bDM → ek

M bD′

M = Û(X) ⋆ ek
M bDM ⋆ Û(X)−1

= Û(X) ⋆ Ŵ (X,Ck) ⋆ Û(X + k)−1 ⋆ ek
M∂M (3.20)

14It may be interesting to compare with a similar relation on a commutative space

e
lµ∂µf(z, y)e−lµ∂µ = f(z + l, y). (3.16)

A crucial difference is that translations in commutative space are an outer automorphism since elµ∂µ is

not an element of the underlying ⋆-algebra. So every points in commutative space are distinguishable, i.e.,

unitarily inequivalent while every “points” in NC space are indistinguishable, i.e., unitarily equivalent. As a

result, one loses the meaning of “points” in NC spacetime. This is a consequence of the fact that the set of

prime ideals defining the spectrum of the algebra Aθ is rather small for θ 6= 0 contrary to the commutative

case. Note that, after turning on ~, the relation (3.16) turns into an inner automorphism of NC algebra

generated by the NC phase space (1.1) since elµ∂µ = e
i
~

lµpµ is now an algebra element. Another intriguing

difference is that the translation in (3.16) is parallel to the generator ∂µ while the translation in (3.15) is

transverse to the generator ya due to the antisymmetry of Bab. It would be interesting to contemplate this

fact from the perspective in the footnote 3.
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where eq. (3.19) was used. eq. (3.20) indicates that Ŵ (X,Ck) is an extended object whose

extension is proportional to the momentum kM . Indeed Ŵ (X,Ck) is the open Wilson line,

well-known in NC gauge theories, defined by

Ŵ (X,Ck) = P⋆ exp
(
i

∫ 1

0
dσ∂σξ

M (σ)ÂM (X + ξ(σ))
)
, (3.21)

where P⋆ denotes path ordering with respect to the ⋆-product along the path Ck parame-

terized by

ξM (σ) = kMσ. (3.22)

The most interesting feature in NC gauge theories is that there do not exist local gauge

invariant observables in position space as eq. (3.15) shows that the ‘locality’ and the ‘gauge

invariance’ cannot be compatible simultaneously in NC space. Instead NC gauge theories

allow a new type of gauge invariant observables which are nonlocal in position space but

localized in momentum space. These are the open Wilson lines in eq. (3.21) and their

descendants with arbitrary local operators attached at their endpoints. It turns out [48]

that these nonlocal gauge invariant operators behave very much like strings ! Indeed this

behavior might be expected from the outset since both theories carry their own non-locality

scales set by α′ (string theory) and θ (NC gauge theories) which are equally of dimension

of (length)2, as advertised in the table 1.

The inner derivation (1.4) in the presence of gauge fields is naturally covariantized by

considering an infinitesimal version of the dynamical inner automorphism (3.17)15

ad bDA
[f̂ ](X) ≡ [D̂A, f̂ ]⋆(X) = DM

A (z, y)
∂f(X)

∂XM
+ · · ·

≡ DA[f ](X) +O(θ3), (3.23)

where Dµ
A = δµ

A since we define [∂µ, f̂(X)]⋆ = ∂f(X)
∂zµ . It is easy to check that the covariant

inner derivation (3.23) satisfies the Leibniz rule and the Jacobi identity, i.e.,

ad bDA
[f̂ ⋆ ĝ] = ad bDA

[f̂ ] ⋆ ĝ + f̂ ⋆ ad bDA
[ĝ], (3.24)

(
ad bDA

⋆ ad bDB
− ad bDB

⋆ ad bDA

)
[f̂ ] = ad

[ bDA, bDB ]⋆
[f̂ ]. (3.25)

In particular, one can derive from eq. (3.25) the following identities

ad[ bDA, bDB]⋆
[f̂ ](X) = −i[F̂AB , f̂ ]⋆(X) = [DA,DB ][f ](X) + · · · (3.26)

[ad bDA
, [ad bDB

, ad bDC
]⋆]⋆[f̂ ](X) = −i[D̂AF̂BC , f̂ ]⋆(X) ≡ RABC

M (X)∂Mf(X) + · · · . (3.27)

Note that the ellipses in the above equations correspond to higher order derivative correc-

tions generated by generalized vector fields D̂A.

We want to emphasize that the leading order of the map (3.23) is nothing but the

Poisson algebra. It is well-known [32] that, for a given Poisson algebra (C∞(M), {·, ·}θ),
15From now on, for our later purpose, we denote the indices carried by the covariant objects in eq. (3.7)

with A, B, · · · to distinguish them from those in the local coordinates XM . The indices A, B, · · · will be

raised and lowered using the flat Lorentzian metric ηAB and ηAB .
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there exists a natural map C∞(M)→ TM : f 7→ Xf between smooth functions in C∞(M)

and vector fields in TM such that

Xf (g) = {g, f}θ (3.28)

for any g ∈ C∞(M). Indeed the assignment between a Hamiltonian function f and the

corresponding Hamiltonian vector field Xf is the Lie algebra homomophism in the sense

X{f,g}θ
= −[Xf ,Xg] (3.29)

where the right-hand side represents the Lie bracket between the Hamiltonian vector

fields. One can see that the Hamiltonian vector fields on M are the limit where the star-

commutator −i[D̂A, f̂ ]⋆ is replaced by the Poisson bracket {DA, f}θ or the Lie derivative

LDA
(f).

The properties, (3.24) and (3.25), show that the adjoint action (3.23) can be identified

with the derivations of the NC algebra Aθ, which naturally generalizes the notion of vector

fields. In addition their dual space will generalize that of 1-forms. Noting that the above NC

differential algebra recovers the ordinary differential algebra at the leading order of NC de-

formations, it should be obvious that almost all objects known from the ordinary differential

geometry find their counterparts in the NC case; e.g., a metric, connection, curvature and

Lie derivatives, and so forth. Actually, according to the Lie algebra homomorphism (3.29),

DA(X) = DM
A (X) ∂

∂XM in the leading order of the map (3.23) can be identified with ordi-

nary vector fields in TM where M is any D-dimensional (pseudo-)Riemannian manifold.

More precisely, the D-dimensional NC U(1) gauge fields D̂M (X) = (D̂µ, D̂a)(X) at the

leading order appear as vector fields (frames in tangent bundle) on a D-dimensional man-

ifold M given by

Dµ(X) = ∂µ +Aa
µ(X)

∂

∂ya
, Da(X) = Db

a(X)
∂

∂yb
, (3.30)

where

Aa
µ ≡ −θab∂Âµ

∂yb
, Db

a ≡ δb
a − θbc∂Âa

∂yc
. (3.31)

Thus the map in eq. (3.23) definitely leads to the vector fields

DA(X) = (∂µ +Aa
µ∂a,D

b
a∂b) (3.32)

or with matrix notation16

DM
A (X) =

(
δν
µ Aa

µ

0 Db
a

)
. (3.33)

16We notice that this structure shares a striking similarity with the Kaluza-Klein construction of non-

Abelian gauge fields from a higher dimensional Einstein gravity [49]. (Our matrix convention is swapping

the row and column in [49].) We will discuss in section 5 a possible origin of the similarity between the

Kaluza-Klein theory and the emergent gravity. A very similar Kaluza-Klein type origin of gravity from

NC gauge theory was also noticed in the earlier work [8] where it was shown that a particular reduction

of NC gauge theory captures the qualitative manner in which NC gauge transformations realize general

covariance.

– 24 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
2

One can easily check from eq. (3.31) that DA’s in eq. (3.32) take values in the Lie algebra

of volume-preserving vector fields, i.e., ∂MD
M
A = 0. One can also determine the dual basis

DA = DA
MdXM ∈ T ∗M defined by eq. (A.1) which is given by

DA(X) =
(
dzµ, V a

b (dyb −Ab
µdz

µ)
)

(3.34)

or with matrix notation

DA
M (X) =

(
δν
µ −V a

b A
b
µ

0 V a
b

)
(3.35)

where V c
aD

b
c = δb

a.

Through the dynamical inner automorphism (3.17), NC U(1) gauge fields ÂM (X)

or U(N → ∞) gauge-Higgs system (Aµ,Φ
a) in the action (3.9) are mapped to vector

fields in TM (to be general “a NC tangent bundle” TMθ) defined by eq. (3.23). This

is a remarkably transparent way to get a D-dimensional gravity emergent from NC gauge

fields or large N gauge fields. We provide in appendix A a rigorous proof of the equivalence

between self-dual NC electromagnetism and self-dual Einstein gravity, originally first shown

in [12], to illuminate how the map (3.23) achieves the duality between NC gauge fields and

Riemannian geometry.

Now our next goal is obvious; the emergent gravity in general. Since the equation of

motion (A.34) for self-dual NC gauge fields is mapped to the Einstein equation (A.22) for

self-dual four-manifolds, one may anticipate that the equations of motion for arbitrary NC

gauge fields would be mapped to the vacuum Einstein equations, in other words,

D̂AF̂AB = 0
?⇐⇒ EMN ≡ RMN −

1

2
gMNR = 0 (3.36)

together with the Bianchi identities

D̂[AF̂BC] = 0
?⇐⇒ RM [ABC] = 0. (3.37)

(We will often use the notation Γ[ABC] = ΓABC + ΓBCA + ΓCAB for the cyclic permutation

of indices.) After some thought one may find that the guess (3.36) is not a sound reasoning

since it should be implausible if arbitrary NC gauge fields allow only Ricci flat manifolds.

Furthermore we know well that the NC U(1) gauge theory (3.9) will recover the usual

Maxwell theory in the commutative limit. But if eq. (3.36) is true, the Maxwell has been

lost in the limit. Therefore we conclude that the guess (3.36) must be something wrong.

We need a more careful musing about the physical meaning of emergent gravity. The

emergent gravity proposes to take Einstein gravity as a collective phenomenon of gauge

fields living in NC spacetime much like the superconductivity in condensed matter physics

where it is understood as a collective phenomenon of Cooper pairs (spin-0 bound states

of two electrons). It means that the origin of gravity is the collective excitations of NC

gauge fields at scales ∼ l2nc = |θ| which are described by a new order parameter, probably

of spin-2, and they should be responsible to gravity even at large scales ≫ lnc, like as

the classical physics emerges as a coarse graining of quantum phenomena when ~ ≪ 1

(the correspondence principle). Therefore the emergent gravity presupposes a spontaneous
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symmetry breaking of some big symmetry (see the table 3) to trigger a spin-2 order param-

eter (graviton as a Cooper pair of two gauge fields). If any, “the correspondence principle”

for the emergent gravity will be that it should recover the Maxwell theory (possibly with

some other fields) coupling to the Einstein gravity in commutative limit |θ| → 0 or at large

distance scales ≫ lnc.
17 Then the Maxwell theory will appear in the right-hand side of the

Einstein equation as an energy-momentum tensor, i.e.,

EMN =
8πGD

c4
TMN (3.38)

where GD is the gravitational Newton constant in D dimensions.

Let us first discuss the consequence of the gravitational correspondence principle post-

poning to section 5 the question about the existence of spin-2 bound states in NC spacetime.

According to the above scheme, we are regarding the NC U(1) gauge theory in eq. (3.9)

as a theory of gravity. Hence the parameters, gY M and |θ|, defining the NC gauge theory

should be related to the gravitational Newton constant GD defining the emergent gravity

in D dimensions. A dimensional analysis (recovering ~ and c too) simply shows that

GD~
2

c2
∼ g2

Y M |Pfθ| 1n (3.39)

where 2n is the rank of θab. Suppose that gY M is nonzero and always c = 1 in eq. (3.39).

One can take a limit |θ| → 0 and ~ → 0 simultaneously such that GD is nonzero. In this

limit we will get the classical Einstein gravity coupling with the Maxwell theory which

we are interested in. Instead one may take a limit |θ| → 0 and GD → 0 simultaneously,

but ~ 6= 0. This limit will correspond to quantum electrodynamics. On the other hand,

the classical Maxwell theory will correspond to the limit, GD~2

|Pfθ|
1
n
∼ g2

Y M = constant, when

GD → 0, ~→ 0 and |θ| → 0.18

We will check the above speculation by showing that eq. (3.38) is correct equations

of motion for emergent gravity. Indeed we will find the Einstein gravity with the energy-

momentum tensor given by Maxwell fields and a “Liouville” field related to the volume

factor in eq. (3.48). But we will see that the guess (3.37) is generally true. Note that

self-dual gauge fields have a vanishing energy-momentum tensor that is the reason why the

self-dual NC gauge fields simply satisfy the relation in eq. (3.36).

We will use the notation in appendix A with obvious minor changes for a D-dimensional

Lorentzian manifold. Define structure equations of the vectors DA ∈ TM as

[DA,DB ] = −fAB
CDC (3.40)

17This is not to say that the electromagnetism is only relevant to the emergent gravity. The weak and

the strong forces should play a role in some way which we don’t know yet. But we guess that they will

affect only a microscopic structure of spacetime since they are short range forces. See section 4 for some

related discussion.
18As a completely different limit, one may keep |θ| nonzero while gY M → 0. Note that this limit does

not necessarily mean that NC gauge theories are non-interacting since, for an adjoint scalar field bφ as

an example, bDa
bφ = ∂a

bφ − i
gY M

~c
[ bAa, bφ]⋆ = ∂a

bφ + gY M θbc

~c
∂ bAa

∂yb
∂ bφ

∂yc + · · · , recovering the original form of

gauge coupling. gY M θbc

~c
can be nonzero depending on the limit under control. The relation (3.39) implies

that there exist gravitational (GD 6= 0) and non-gravitational (GD = 0) theories for the case at hand.

Unfortunately we did not understand what they are.
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where fAB
µ = 0, ∀A,B for the basis (3.32). From the experience of the self-dual case,

we know that the vector fields DA are related to the orthonormal frames (vielbeins) EA

by DA = λEA where the conformal factor λ will be determined later. (This situation is

reminiscent of the string frame (DA) and the Einstein frame (EA) in string theory.) Hence

the D-dimensional metric is given by

ds2 = ηABE
A ⊗ EB

= λ2ηABD
A ⊗DB = λ2ηABD

A
MD

B
N dXM ⊗ dXN (3.41)

where EA = λDA. In particular, the dual basis (3.34) determines its explicit form up to a

conformal factor as [50]

ds2 = λ2
(
ηµνdz

µdzν + δabV
a
c V

b
d (dyc −Ac)(dyd −Ad)

)
(3.42)

where Aa = Aa
µdz

µ. The structure function fAB
C is also conformally mapped to eq. (A.11)

with

fAB
C = λfAB

C −DA log λδC
B +DB log λδC

A . (3.43)

In the case of D = 4, eq. (3.26) immediately shows that the leading order of self-dual

NC gauge fields described by eq. (A.34) reduces to the following self-duality equation

fAB
E = ±1

2
εAB

CDfCD
E. (3.44)

We proved in appendix A that the metric (3.42) satisfying eq. (3.44) describes self-dual

Einstein manifolds where the conformal factor λ2 is given by eq. (A.32).

Now let us fix the conformal factor λ2 in the metric (3.41). By an SO(d−1, 1)×SO(2n)

rotation of basis vectors EA, we can impose the condition that

fBA
B ≡ φA = (3−D)EA log λ (3.45)

and eq. (3.43) in turn implies

fBA
B ≡ ρA = 2DA log λ. (3.46)

Note that fAB
µ = 0, ∀A,B which is the reason why one has to use only SO(d−1, 1)×SO(2n)

rotations to achieve the condition (3.45) (see the footnote 23 for a similar argument for

self-dual gauge fields). eq. (3.45) means that the vector fields EA are volume preserving

with respect to a D-dimensional volume form v = λ(3−D)vg where

vg = E1 ∧ · · · ∧ ED (3.47)

and then the vector fields DA are volume preserving with respect to the volume form

vD = λ(2−D)vg. (See eq. (A.31) for its proof.) Therefore we get19

λ2 = vD(D1, · · · ,DD). (3.48)

19One can directly check eq. (3.46) as follows. Acting LDA on both sides of eq. (3.48),

we get LDA

“
vD(D1, · · · , DD)

”
= (LDAvD)(D1, · · · , DD) +

PD

B=1 vD(D1, · · · ,LDADB , · · · , DD) =

(LDAvD)(D1, · · · , DD) +
PD

B=1 vD(D1, · · · , [DA, DB ], · · · , DD) = (∇ · DA + fBA
B)vD(D1, · · · , DD) =

(2DA log λ)vD(D1, · · · , DD). Since LDAvD = (∇ · DA)vD = 0, eq. (3.46) is deduced. Conversely, if

fBA
B = 2DA log λ, DA’s all preserve the volume form vD, i.e., LDAvD = (∇ · DA)vD = 0.
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Since ∂MD
M
A = 0, we know that the invariant volume is given by vD = dz1 ∧ · · · ∧ dzd ∧

dy1 ∧ · · · ∧ dy2n. Therefore we finally get

λ2 = det−1V a
b . (3.49)

In terms of the structure functions one can get the map in eq. (3.27)

− i[D̂AF̂BC , f̂ ]⋆ =
(
DAfBC

D − fBC
EfAE

D
)
DD[f ] + · · · . (3.50)

In other words, one can get the following maps for the equations of motion and the

Bianchi identities

D̂AF̂AB = 0 ⇐⇒ ηAB
(
DAfBC

D − fBC
EfAE

D
)

= 0, (3.51)

D̂[AF̂BC] = 0 ⇐⇒ D[AfBC]
D − f[BC

EfA]E
D = 0. (3.52)

The spacetime geometry described by the metric (3.41) or (3.42) is an emergent gravity

arising from NC gauge fields whose underlying theory is defined by the action (3.9). The

fundamental variables in our approach are of course gauge fields which should be subject to

eqs.(3.51) and (3.52). A spacetime metric is defined by NC (or non-Abelian) gauge fields

and regarded as a collective variable (a composite or bilinear of gauge fields). Therefore

our goal is to show that the equations of motion (3.51) for NC gauge fields together with

the Bianchi identity (3.52) can be rewritten using the map (3.23) as the Einstein equation

for the metric (3.41). In other words, the Einstein equation EMN = 8πGDTMN is nothing

but the equation of motion for NC gauge fields represented from the (emergent) spacetime

point of view.

Our strategy is the following. First note that the Riemann curvature tensors defined

by eq. (B.6) have been expressed with the orthonormal basis EA. Since we will impose on

them eqs.(3.51) and (3.52), it will be useful to represent them with the gauge theory basis

DA. As a consequence, it will be shown that Einstein manifolds emerge from NC gauge

fields after imposing eqs.(3.51) and (3.52). All calculations can straightforwardly be done

using the relations (3.43) and (B.10). All the details show up in appendix B.

The result is very surprising. The emergent gravity derived from NC gauge fields

predicts a new form of energy which we call the “Liouville” energy-momentum tensor.

Indeed this form of energy was also noticed in [17] with a nonvanishing Ricci scalar. The

terminology is attributed to the following fact. The vector fields DA are volume preserving

with respect to the symplectic volume vD (see the footnote 19). Thus vD is constant

along integral curves of DA, in which case DA are called incompressible with respect to

vD and which is known as the Liouville theorem in Hamiltonian mechanics [32]. (See [30]

for the Liouville theorem in curved spacetime.) Superficially this seems to imply that

spacetime behaves like an incompressible fluid so that spacetime volume does not change

along the flow generated by the vector field DA. But we have to be careful to interpret the

geometrical meaning of the Liouville theorem because the symplectic volume vD is different

from the Riemannian volume vg = λ(D−2)vD in eq. (3.47). Furthermore, as we showed in

appendix B, the vector field DA contributes to both sides of the Einstein equation (3.38).
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So the spacetime volume given by vg can change along the flow described by the vector

field DA and its shape may also change in very complicated ways. But this kind of a local

expansion, distortion and twisting of spacetime manifold will spend some energy, which

should be supplied from the right-hand side. This picture may be clarified by looking at

the so-called Raychaudhuri equation [51, 52].

The Raychaudhuri equation is evolution equations of the expansion, shear and rotation

of flow lines along the flow generated by a vector field in a background spacetime. Here we

introduce an affine parameter τ labeling points on the curves of the flow. Given a timelike

unit vector field uM , i.e., uMuM = −1, the Raychaudhuri equation in D dimensions is

given by

Θ̇− u̇M
;M + ΣMNΣMN − ΩMNΩMN +

1

D − 1
Θ2 = −RMNu

MuN . (3.53)

Θ = uM
;M represents the expansion/contraction of volume and Θ̇ = dΘ

dτ while u̇M =

uM
;Nu

N represents the acceleration due to nongravitational forces, e.g., the Lorentz force.

ΣMN and ΩMN are the shear tensor and the vorticity tensor, respectively, which are all

orthogonal to uM , i.e., ΣMNu
N = ΩMNu

N = 0. The Einstein equation (3.38) can be

rewritten as

RMN = 8πGD

(
TMN −

1

2
gMNTP

P
)

(3.54)

where TMN = EA
ME

B
NTAB. In four dimensions, one can see from eq. (3.54) that the right-

hand side of eq. (3.53) is given by

−RMNu
MuN = − 1

2λ2
uMuN (ρMρN + ΨMΨN )− 8πG4T

(M)
MNu

MuN (3.55)

where the Lorentzian energy-momentum tensor in eq. (3.54) can be read off from eq. (B.37)

and eq. (B.38) having in mind the footnote 26.

Suppose that all the terms except the expansion evolution Θ̇ on the left-hand side of

eq. (3.53) as well as the Maxwell term T
(M)
MN in eq. (3.55) vanish or become negligible. In

this case the Raychaudhuri equation reduces to

Θ̇ = − 1

2λ2
uMuN (ρMρN + ΨMΨN ). (3.56)

Note that the Ricci scalar is given by R = 1
2λ2 g

MN (ρMρN + ΨMΨN ). Therefore R < 0

when ρM and ΨM are timelike while R > 0 when ρM and ΨM are spacelike. Remember

that our metric signature is (− + ++). So, for the timelike perturbations, Θ̇ < 0 which

means that the volume of a three dimensional spacelike hypersurface orthogonal to uM

decreases. However, if spacelike perturbations are dominant, the volume of the three

dimensional spacelike hypersurface can expand. For example, consider the most symmetric

perturbations as in eq. (B.50), i.e.,

〈ρAρB〉 =
1

4
ηABρ

2
C , 〈ΨAΨB〉 =

1

4
ηABΨ2

C . (3.57)

More precisely, one can decompose the perturbation (3.56) into trace (scalar), anti-

symmetric (vector) and symmetric-traceless (tensor) parts. Since we look at only the scalar

– 29 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
2

perturbation in eq. (3.53), simply assume that the vector and tensor modes are negligible

for some reasons, e.g., the cosmological principle. In this case, eq. (3.56) becomes

Θ̇ =
1

8λ2
gMN (ρMρN + ΨMΨN ) > 0. (3.58)

The perturbation (3.57) does not violate the energy condition since uMuNT
(L)
MN =

1
64πG4λ2 g

MN (ρMρN + ΨMΨN ) > 0. See eq. (3.95). This means that the spacetime ge-

ometry is in a de Sitter phase. Thus we see that the Liouville energy-momentum tensor

can act as a source of gravitational repulsion. We will further discuss in section 3.4 this

energy as a plausible candidate of dark energy.

Up to now we have considered fluctuations around the vacuum (3.1) corresponding to a

uniform condensation of gauge fields. In this case if we turn off all fluctuations, i.e., ÂM = 0

in eq. (3.23), the metric (3.41) or (3.42) simply reduces to a flat spacetime. We have to

point out that the fluctuations need not be small. Our ignorance of the next leading order,

O(θ3), in eq. (3.23) corresponds to the limit of slowly varying fields,
√

2πα′|∂F
F | ≪ 1, in the

sense keeping field strengths (without restriction on their size) but not their derivatives [3].

Since the Ricci curvature (B.27) is purely determined by fABC ∼ FAB (see eq. (B.39)),

this approximation corresponds to the limit of slowly varying curvatures compared to the

NC scale |θ| ∼ l2nc but without restriction on their size. This implies that NC effects

should be important for a violently varying spacetime, e.g., near the curvature singularity,

as expected.

3.3 General NC spacetime

Now the question is how to generalize the emergent gravity picture to the case of a nontrivial

vacuum, e.g., eq. (2.26), describing an inhomogeneous condensate of gauge fields. The

Poisson structure Θab(x) = ( 1
B )ab(x) is nonconstant in this case, so the corresponding NC

field theory is defined by a nontrivial star-product

[Y a, Y b]e⋆ = iΘab(Y ) (3.59)

where Y a denote vacuum coordinates which are designed with the capital letters to distin-

guish them from ya for the constant vacuum (3.1). The star product [f̂ , ĝ]e⋆ for f̂ , ĝ ∈ AΘ

can be perturbatively computed via the deformation quantization [31]. There are excellent

earlier works [53] especially relevant for the analysis of the DBI action as a generalized

geometry though a concrete formulation of NC field theories for a general NC spacetime is

still out of reach.

Recall that we are interested in the commutative limit so that

− i[f̂ , ĝ]e⋆ = Θab(Y )
∂f(Y )

∂Y a

∂g(Y )

∂Y b
+ · · ·

≡ {f, g}Θ + · · · (3.60)

for f̂ , ĝ ∈ AΘ. Using the Poisson bracket (3.60), we can similarly realize the Lie algebra

homomophism C∞(M) → TM : f 7→ Xf between a Hamiltonian function f and the

corresponding Hamiltonian vector field Xf . To be specific, for any given function f ∈
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C∞(M), we can always assign a Hamiltonian vector field Xf defined by Xf (g) = {g, f}Θ
with some function g ∈ C∞(M). Then the following Lie algebra homomophism holds

X{f,g}Θ
= −[Xf ,Xg] (3.61)

as long as the Jacobi identity for the Poisson bracket {f, g}Θ holds or, equivalently, the

Schouten-Nijenhuis bracket for the Poisson structure Θab vanishes [31].

Furthermore there is a natural automorphism D(~) which acts on star-products [31]:

f ⋆̃ g = D(~)
(
D(~)−1(f) ⋆ D(~)−1(g)

)
. (3.62)

In the commutative limit where D(~) ≈ 1, eq. (3.62) reduces to the following condition

{f, g}Θ = {f, g}θ . (3.63)

Let us explain what eq. (3.63) means. For f = Y a(y) and g = Y b(y), eq. (3.63) implies that

Θab(Y ) = θcd∂Y
a

∂yc

∂Y b

∂yd
(3.64)

whose statement is, of course, equivalent to the Moser lemma (2.13). Also notice that

eq. (3.63) defines diffeomorphisms between vector fields X ′
f (g) ≡ {g, f}Θ and Xf (g) ≡

{g, f}θ such that

X ′
f

a
=
∂Y a

∂yb
Xb

f . (3.65)

Indeed the automorphism (3.62) corresponds to a global statement that the two star-

products involved are cohomologically equivalent in the sense that they generate the same

Hochschild cohomology [31].

It is still premature to know the precise form of the full NC field theory defined by

the star product (3.60). Even the commutative limit where the star commutator reduces

to the Poisson bracket in eq. (3.60) still bears some difficulty since the derivatives of Θab

appear here and there. For example,

{Bab(Y )Y b, f}Θ =
∂f

∂Y a
+ Θbc∂Bad

∂Y b
Y d ∂f

∂Y c
. (3.66)

In particular, {Bab(Y )Y b, f}Θ 6= ∂f
∂Y a . There is no simple way to realize the derivative

∂
∂Y a as an inner derivation.20 Now we will suggest an interesting new approach for the

nontrivial background (2.26) based on the remark (3) in section 2.3.

Let us return to the remark (3). Denote the nontrivial B-field in eq. (2.26) as

Bab(x) = (B̄ + F̄ (x))ab (3.67)

20To be precise, we have to point out that the extra term in eq. (3.66) can be ignored under the limit

of our consideration. We are considering the limit of slowly varying fields where the derivative of field

strengths is ignored (see the last paragraph in section 3.2). Then eq. (3.66) defines the inner derivation

in this limit. We expect the analysis in this limit will be very straightforward. But we will not push to

this direction because the coming new approach seems to provide a more clear insight for the emergent

geometry.
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where B̄ab =
(
θ−1
)
ab

describes a constant background such as eq. (3.1) while F̄ (x) = dĀ(x)

describes an inhomogeneous condensate of gauge fields. Then the left-hand side of eq. (2.24)

is of the form g + κ(B̄ + F) where F = dA with A(x) = Ā(x) + A(x). It should be

completely conceivable that it can be mapped to the NC gauge theory of the gauge field

A(x) in the constant B̄-field background according to the Seiberg-Witten equivalence [22].

Let us denote the corresponding NC gauge field as Âa ≡ B̂a + Ĉa. The only notable point

is that the gauge field Âa has an inhomogeneous background part B̂a and Ĉa describes

fluctuations around this background. This situation should be familiar, for example, with

a gauge theory in an instanton (or soliton) background.

So everything goes parallel to the previous case. We will suppose a general situation

so that the background gauge fields Âµ(z, y) as well as B̂b(z, y) depend on zµ. Let us

introduce the following covariant coordinates

X̂a(z, y) = ya + θabÂb(z, y) = ya + θabB̂b(z, y) + θabĈb(z, y)

≡ Y a(z, y) + θabĈb(z, y) (3.68)

where we identified the vacuum coordinates Y a in eq. (3.59) because we have to recover

them after completely turning off the fluctuation Ĉb. Now the covariant derivative D̂M in

eq. (3.7) can be defined in the exactly same way

D̂M = ∂M − iÂM (z, y) = (D̂µ,−iB̄abX̂
b)(z, y) (3.69)

where ∂M = (∂µ,−iB̄aby
b). In addition the NC fields D̂A in eq. (3.69) (see the footnote 15)

can be mapped to vector fields in the same way as eq. (3.23).

Since the results in section 3.2 can be applied to arbitrary NC gauge fields in the

constant B-field, the same formulae can be applied to the present case at hand with the

understanding that the vector fields DA in eq. (3.23) refer to total gauge fields including

the background. This means that the vector fields DA = λEA ∈ TM reduce to D̄A = λ̄ĒA

after completely turning off the fluctuations where D̄A is determined by the background

(∂µ − iÂµ(z, y),−iB̄abY
b(z, y)) and λ̄ satisfies the relation

λ̄2 = vD(D̄1, · · · , D̄D). (3.70)

Therefore the metric for the background is given by

ds2 = ηABĒ
A ⊗ ĒB

= λ̄2ηABD̄
A ⊗ D̄B = λ̄2ηABD̄

A
M D̄B

N dXM ⊗ dXN . (3.71)

Of course we have implicitly assumed that the background D̄A also satisfies eqs.(3.51)-

(3.52). In four dimensions, for instance, we know that the metric (3.71) describes Ricci-flat

four manifolds if D̄A satisfies the self-duality equation (3.44).

Now let us look at the picture of the right-hand side of eq. (2.24). After applying the

Darboux transform (2.13) for the symplectic structure (3.67), the right-hand side becomes

of the form hab(y) + κ(B̄ab + Fab(y)) where

Fab(y) =
∂xα

∂ya

∂xβ

∂yb
Fαβ(x) ≡ ∂aAb(y)− ∂bAa(y) (3.72)
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and the metric hab(y) is given by eq. (2.25). Note that in this picture the gauge fields Aa(y)

are regarded as fluctuations propagating in the background hab(y) and B̄ab. Therefore it

would be reasonable to interpret the right-hand side of eq. (2.24) as a NC gauge theory of

the gauge field Aa(y) defined by the canonical NC space (3.1) but in curved space described

by the metric hab(y).

Although the formulation of NC field theory in a generic curved spacetime is still a

challenging problem, we want to speculate on how to formulate the emergent gravity within

this picture since the underlying picture for the identity (2.24) is rather transparent. In this

regard, the results in [53] would be useful. In this approach the inhomogeneous condensate

of gauge fields in the vacuum (3.67) appears as an explicit background metric, which implies

that the metric (3.41) in this picture will be replaced by

ds2 = gABE
A ⊗ EB

= Λ2gABD
A ⊗DB = Λ2gABD

A
MDB

N dXM ⊗ dXN (3.73)

where gAB is the metric in the space spanned by the noncoordinate bases EA = ΛDA [49].

Since the anholonomic basis DA in eq. (3.73) is supposed to be flat when the fluctuations

are turned off, i.e., Fab = 0, the metric Λ2gAB will correspond to the background metric

hab(y) in the DBI action (2.24). Since the metric (3.73) has the Riemannian volume form

vg =
√−gE1 ∧ · · · ∧ED instead of eq. (3.47), the volume form vD = Λ(2−D)vg in eq. (3.48)

will be given by

vD =
√−gΛ2D1 ∧ · · · ∧DD. (3.74)

So the function Λ in eq. (3.73) will satisfy the condition

√−gΛ2 = vD(D1, · · · ,DD). (3.75)

And it is easy to infer that
√−gΛ2 → 1 for vanishing fluctuations since DA becomes flat

for that case.

According to the metric (3.73), the indices A,B, · · · will be raised and lowered using

the metric gAB . As usual, the torsion free condition (B.3) for the metric (3.73) will be

imposed to get the relation (B.4) where ωABC = gBDωA
D

C and fABC = gCDfAB
D. Since

gAB is not a flat metric, ωA
B

C in eq. (B.1) or eq. (B.2) will actually be the Levi-Civita

connections in noncoordinate bases rather than the spin connections, but we will keep the

notation for convenience. And the condition that the metric (3.73) is covariantly constant,

i.e., ∇C

(
gABE

A ⊗ EB
)

= 0, leads to the relation [49]

ωABC =
1

2

(
EAgBC − EBgCA + ECgAB

)
+

1

2

(
fABC − fBCA + fCAB

)
. (3.76)

The curvature tensors have exactly the same form as eq. (B.6).

All the calculations in appendix B can be repeated in this case although the details

will be much more complicated. We will not perform this calculation since it seems to be

superfluous at this stage. But we want to draw some interesting consequences from the

natural requirement that the metric (3.73) must be equivalent to the metric (3.41) or (3.42)

in general, not only for backgrounds.
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Let us summarize the two pictures we have employed. Let us indicate the first picture

with (L) and the second picture with (R). When all fluctuations are vanishing, we have the

following results:

(L) : ds2 = λ̄2ηABD̄
A
MD̄

B
N dXM ⊗ dXN

= λ̄2
(
ηµνdz

µdzν + δabV
a
c V

b
d (dyc −Ac)(dyd −Ad)

)
(3.77)

vD = dz1 ∧ · · · ∧ dzd ∧ dy1 ∧ · · · ∧ dy2n (3.78)

λ̄2 = det−1V a
b (3.79)

(R) : ds2 = Λ2gMNdX
M ⊗ dXN (3.80)

vD = dz1 ∧ · · · ∧ dzd ∧ dy1 ∧ · · · ∧ dy2n (3.81)

Λ2 =
1√−g . (3.82)

One can immediately see that (L) and (R) are equal each other if gMN = ηABD̄
A
M D̄B

N . In-

deed, this equivalence is nothing but the geometric manifestation of the equivalence (2.24).

Therefore we conjecture that the equivalence between the two pictures (L) and (R) remains

true even after including all fluctuations.

Now let us examine whether the action (3.9) allows a conformally flat metric as a

solution. First we point out that Λ2 = 1 for the flat metric gMN = ηMN as eq. (3.82)

immediately shows. This can also be seen from the picture (L). Since we put Ac = 0,

gMN = ηMN corresponds to a coordinate transformation ya → ỹa such that V a
b dy

b = dỹa.

This coordinate transformation can be expressed as Db
a = ∂yb

∂ỹa using eq. (3.31). That is,

the coordinate ỹa is a solution of the equation Daỹ
b ≡ ∂ỹb

∂ya + {Âa, ỹ
b}θ = δb

a. Thus we

can replace the vector field Da ∈ TM by ∂
∂ỹa in the space described by the coordinates

(zµ, ỹa). Then eq. (3.70) is automatically satisfied since the volume form (3.78) is equal to

vD = det−1V a
b dz1∧· · ·∧dzd∧dỹ1∧· · ·∧dỹ2n = λ̄2dz1∧· · ·∧dzd∧dỹ1∧· · ·∧dỹ2n. Because

we already put Âµ = 0, the vector fields in TM are now represented by DA[f ](zµ, ỹa) =(
∂

∂zµ ,
∂

∂ỹa )[f ], which implies ∀ fAB
C = 0. Therefore λ̄ should be a constant due to the

relation (3.46).

Thereby we see that the conformally flat metric is instead given by the vector field

D̄A = φ(z, y)∂A, which corresponds to the coordinate transformations zµ → z̃µ, ya → ỹa

such that dzµ = φ−1dz̃µ and V a
b dy

b = φ−1dỹa. In this case the metric (3.77) and the

volume form (3.78) are given by

ds2 = φD−2
(
ηµνdz̃

µdz̃ν + dỹadỹa
)

(3.83)

vD = dz̃1 ∧ · · · ∧ dz̃d ∧ dỹ1 ∧ · · · ∧ dỹ2n (3.84)

where we used eq. (3.82), i.e., Λ2 = λ̄2 = φD. For the vector field D̄A = φ(z̃, ỹ)∂A, the

equation of motion (3.51) becomes

0 = {D̂AF̂AB , f}θ = φ(∂Aφ∂Aφ+ φ∂A∂Aφ)∂Bf − φ(∂Aφ∂Bφ+ φ∂A∂Bφ)∂Af (3.85)

for any reference function f = f(z̃, ỹ).
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We will try two kinds of simple ansatz

(I) : φ = φ(τ) where τ = z̃0, (3.86)

(II) : φ = φ(ρ) where ρ2 =

2n∑

a=1

ỹaỹa. (3.87)

One can find for the ansatz (I) that eq. (3.85) leads to the equation d
dτ

(
φdφ

dτ

)
= 0 and so

φ(τ) = γ
√
τ + τ0. In four dimensions, this solution describes an expanding cosmological

solution [30, 52]. It is interesting that the expanding cosmological solution comes out from

“pure” NC electromagnetism (3.9) without any source term.21

However, for the ansatz (II), we found that only φ = constant can be a solution. This

seems to be true in general. Hence we claim that a conformally flat metric for the ansatz (II)

is trivial. A source term might be added to the action (3.9) to realize a nontrivial solution.

The solution for the ansatz (II) should be interesting because the AdSp × Sq space with

q + 1 = 2n belongs to this class and it can be described by eq. (3.83) by choosing

φD−2 =
L2

ρ2
. (3.88)

In particular, AdS5 × S5 space is given by the case, d = 4, n = 3, that is,

ds2 =
L2

ρ2

(
ηµνdz̃

µdz̃ν + dỹadỹa
)

=
L2

ρ2

(
ηµνdz̃

µdz̃ν + dρ2
)

+ L2dΩ2
5. (3.89)

We hope to address in the near future what kind of source term should be added to get the

conformal factor (3.88). eq. (3.88) looks like a potential of codimension-2n Coulomb sources

in D dimensions when we identify the harmonic function H(ρ)
1

n−1 = φD−2 = L2/ρ2, which

presumably corresponds to the vacuum (3.14).

3.4 Hindsights

We want to ponder on the spacetime picture revealed from NC gauge fields and the emer-

gent gravity we have explored so far.

The most remarkable picture emerging from NC gauge fields is about the origin of

flat spacetime, which is absent in Einstein gravity. Of course the notorious problem for

emergent time is elusive as ever. We will refer to the emergence of spaces only here, but

we will discuss in section 4 how “Emergent Time” would be defined in the context of

emergent gravity.

Note that the flat spacetime is a geometry of special relativity rather than general

relativity and the special relativity is a theory about kinematics rather than dynamics.

Hence the general relativity says nothing about the dynamical origin of flat spacetime

21In comoving coordinates, the metric (3.83) is of the form ds2 = −dt2 + a(t)2dx2 where t = 2
3
γτ

3
2 and

a(t)2 = γ2τ ≡ αt
2
3 . Since a(t) ∝ t

2
3(1+w) , we see that this metric corresponds to a universe characterized

by the equation of state p = ρ, i.e., w = 1. It has been argued in [54] that the p = ρ cosmology corresponds

to the most holographic background and the most entropic initial condition for the universe. We thank

Qing-Guo Huang for drawing our attention to [54].
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since the flat spacetime defining a local inertial frame is assumed to be a priori given

without reference to its dynamical origin. So there is a blind point about the dynamical

origin of spacetime in general relativity.

Our scheme for the emergent gravity implies that the uniform condensation of gauge

fields in a vacuum (3.1) will be a source of flat spacetime. Now we will clarify the dynamical

origin of flat spacetime based on the geometric representation in section 3.2. We will equally

refer to the commutative spacetime Rd
C with the understanding that it has been T-dualized

from a fully NC space (except time) in the sense of eq. (3.12) although the transition from

NC to commutative ones is mysterious (see the remark (1) in section 3.1). Therefore we

will regard ∂µ in eq. (3.23) as a background part since it is related to ya/κ via the matrix

T-duality (3.12).

The basic principle for the emergent gravity is the map (3.23) or the correspon-

dence (3.28) between NC fields in Aθ and vector fields in TM . The most notable point

is that we necessarily need a Poisson (or symplectic) structure on M , viz., NC space-

time, to achieve the correspondence between Aθ and Γ(TM), sections of tangent bundle

TM → M . Basically the θ-deformation (1.3) introduces the duality between NC gauge

fields and spacetime geometry. The crux is that there exists a novel form of the equiva-

lence principle, guaranteed by the global Moser lemma, for the electromagnetism in the

context of symplectic geometry. In this correspondence a flat spacetime is coming from

the constant background itself defining the NC spacetime (3.1). This observation, trivial

at the first glance, was the crucial point for the proposal in [15] to resolve the cosmological

constant problem.

We know that the uniform condensation of stress-energy in a vacuum will appear as

a cosmological constant in Einstein gravity. For example, if we shift a matter Lagrangian

LM by a constant Λ, that is,

LM → LM − 2Λ, (3.90)

this shift results in the change of the energy-momentum tensor of matter by TMN →
TMN −ΛgMN in the Einstein equation (3.38) although the equations of motion for matters

are invariant under the shift [21]. Definitely this Λ-term will appear as a cosmological

constant in Einstein gravity and it has an observable physical effect. For example, a flat

spacetime is no longer a solution of the Einstein equation in the case of Λ 6= 0.

The emergent gravity defined by the action (3.9) responds completely differently to

the constant shift (3.90). To be specific, let us consider a constant shift of the background

BMN → BMN + δBMN . Then the action (3.9) in the new background becomes

SB+δB = SB +
1

2g2
Y M

∫
dDXF̂MNδBMN −

1

4g2
Y M

∫
dDX

(
δB2

MN−2BMNδBMN

)
. (3.91)

The last term in eq. (3.91) is simply a constant and thus it will not affect the equations

of motion (3.51). The second term is a total derivative and so it will vanish if F̂MN well

behaves at infinity. (It is a defining property in the definition of a star product that∫
dDXf̂ ⋆ ĝ =

∫
dDXf̂ · ĝ. Then the second term should vanish as far as ÂM → 0 at

infinity.) If spacetime has a nontrivial boundary, the second term could be nonvanishing at
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the boundary which will change the theory under the shift. We will not consider a nontrivial

spacetime boundary since the boundary term is not an essential issue in the cosmological

constant problem, though there would be an interesting physics at the boundary. Then

we get the result SB+δB
∼= SB. Indeed this is the Seiberg-Witten equivalence between NC

field theories defined by the noncommutativity θ′ = 1
B+δB and θ = 1

B [22]. Although the

vacuum (3.1) readjusts itself under the shift, the Hilbert spaces Hθ′ and Hθ in eq. (3.2) are

completely isomorphic if and only if θ and θ′ are nondegenerate constants. Furthermore

the vector fields in eq. (3.23) generated by B + δB and B backgrounds are equally flat as

long as they are constant. We also observed in eq. (B.44) that the background gauge field

does not contribute to the energy-momentum tensor.

Therefore we conclude that the constant shift of energy density such as eq. (3.90) is

a symmetry of the theory (3.9) although the action (3.9) defines a theory of gravity in

the sense of emergent gravity. Thus the emergent gravity is completely immune from the

vacuum energy. In other words, the vacuum energy does not gravitate unlike as Einstein

gravity. This was an underlying logic in [15] why the emergent gravity can resolve the

cosmological constant problem.

One has realized that the cosmological constant can be interpreted as a measure of the

energy density of the vacuum. One finds that the resulting energy density is of the form

ρvac =
1

V

∑

k

1

2
~ωk ∼ ~k4

max (3.92)

where kmax is a certain momentum cutoff below which an underlying theory can be trusted.

Thus the vacuum energy (3.92) may be understood as a vast accumulation of harmonic os-

cillators in space. Note that the vacuum (3.1) is also the uniform condensation of harmonic

oscillators in space. The immune difference is that the harmonic oscillator in eq. (3.92) is

defined by the NC phase space (1.1) while the harmonic oscillator in eq. (3.1) is defined by

the NC space (1.3).

The current framework of quantum field theory, which has been confirmed by ex-

tremely sophisticated experiments, mostly predicts the vacuum energy of the order ρvac ∼
(1018GeV )4. The real problem is that this huge energy couples to gravity in the framework

of Einstein gravity and so results in a bizarre contradiction with contemporary astronomical

observations. This is the notorious cosmological constant problem.

But we have observed that the emergent gravity shows a completely different picture

about the vacuum energy. The vacuum energy (3.92) does not gravitate regardless of how

large it is as we explained above. So there is no cosmological constant problem in emergent

gravity. More remarkable picture in emergent gravity is that the huge energy MP l =

(8πG)−1/2 ∼ 1018GeV is actually the origin of the flat spacetime. Here the estimation

of the vacuum energy for the condensate (3.1), for example, ρvac ∼ |Bab|2 ∼ M4
P in four

dimensions, is coming from our identification of the Newton constant (3.39). In other

words, the emergent gravity says that a flat spacetime is not free gratis but a result of the

Planck energy condensation in a vacuum.

An important point is that the vacuum (3.1) triggered by the Planck energy conden-

sation causes the spacetime to be NC and the NC spacetime is the essence of emergent
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gravity. Since the flat spacetime is emergent from the uniform vacuum (3.1) and the Lorentz

symmetry is its spacetime symmetry, the dynamical origin of flat spacetime implies that

the Lorentz symmetry is also emergent from the NC spacetime (3.1). In addition, if the

vacuum (3.1) was triggered by the Planck energy condensation, the flat spacetime as well

as the Lorentz symmetry should be very robust against any perturbations since the Planck

energy is the maximum energy in Nature.

Furthermore the noble picture about the dynamical origin of the flat spacetime may

explain why gravity is so weak compared to other forces. Let us look at eq. (2.22). As we

know, ya is a background part defining a flat spacetime and the gauge field Âa describes

dynamical fluctuations around the flat spacetime. (As we mentioned at the beginning of

this section, the commutative space in eq. (3.7) can also be incorporated into this picture

using the T-duality (3.12).) One may imagine these fluctuations as shaking the background

spacetime lattice defined by the Fock space (3.2), which generates gravitational fields. But

the background lattice is very solid since the stiffness of the lattice is supposed to be the

Planck scale. In other words, the gravity generated by the deformations of the spacetime

lattice (3.2) will be very weak since it is suppressed by the background stiffness of the

Planck scale. So, ironically, the weakness of gravitational force may be due to the fact that

the flat spacetime is originated from the Planck energy.

The emergent gravity thus reveals a remarkably beautiful and consistent picture about

the origin of flat spacetime. Does it also say something about dark energy ?

Over the past ten or twenty years, several magnificent astronomical observations have

confirmed that our Universe is composed of 5 % ordinary matters and radiations while 23

% dark matter and 72 % dark energy. The observed value of the dark energy turned out

to be very very tiny, say,

∆ρobs ≤ (10−12GeV )4 (3.93)

which is desperately different from the theoretical estimation (3.92) by the order of 10120.

What is the origin of the tiny dark energy (3.93) ?

We suggested in [15] that the dark energy (3.93) is originated from vacuum fluctuations

around the primary background (3.1). Since the background spacetime (3.1) is NC, any UV

fluctuations of the Planck scale LP in the NC spacetime will be necessarily paired with IR

fluctuations of a typical scale LH related to the size of cosmic horizon in our Universe due

to the UV/IR mixing [55]. A simple dimensional analysis shows that the energy density of

the vacuum fluctuation is of the order

∆ρ ∼ 1

L2
PL

2
H

(3.94)

which is numerically in agreement with the observed value (3.93) up to a factor [15]. It

should be remarked that the vacuum fluctuation (3.94) will be an inevitable consequence if

our picture about the dynamical origin of flat spacetime is correct. If the vacuum (3.1) or

equivalently the flat spacetime is originated from the Planck energy condensation (it should

be the case if the identification (3.39) is correct), the energy density of the vacuum (3.1)

will be ρvac ∼ M4
P l which is the conventionally identified vacuum energy predicted by

quantum field theories. Thus it is natural to expect that cosmological fluctuations around
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the vacuum (3.1) or the flat spacetime will add a tiny energy ∆ρ to the vacuum so that

the total energy density is equal to ρ ∼ M4
P l

(
1 +

L2
P

L2
H

)
since L2

P ≡ 8πG4 and L2
H ≡ 1/Λ

are only the relevant scales in the Einstein equation (3.38) with TMN = − Λ
8πG4

gMN =

−M4
P l

(
LP

LH

)2
gMN [21]. Since the first term does not gravitate, the second term (3.94) will

be the leading contribution to the deformation of spacetime curvature, leading to possibly

a de Sitter phase. It should be remarked that the fluctuation (3.94) is of the finite size

LH . So one cannot apply the argument (3.91) since ∆ρ is not constant over the entire

spacetime even if it is constant over a Hubble patch.

Now we will argue that the Liouville energy (B.38) may (or can) explain the dark en-

ergy (3.94). First let us perform the Wick rotation for the energy-momentum tensor (B.38)

using the rule in the footnote 26 to get the Lorentzian energy-momentum tensor in the

4-dimensional spacetime. It is then given by

T
(L)
MN =

1

16πG4λ2

(
ρMρN + ΨMΨN −

1

2
gMN (ρ2

P + Ψ2
P )

)
(3.95)

where ρM = 2∂Mλ and ΨM = EA
MΨA. First of all we emphasize that we already checked in

eq. (3.56) that it can exert a negative pressure causing an expansion of universe, possibly

leading to a de Sitter phase. We also pointed out below eq. (B.51) that it can behave

like a cosmological constant, i.e., ρ = −p, in a constant (or almost constant) curvature

spacetime. Another important property is that the Liouville energy (3.95) is vanishing for

the flat spacetime. So it should be small if the spacetime is not so curved.

To be more quantitative, let us consider the fluctuation (3.57) and look at the energy

density uMuNT
(L)
MN along the flow represented by a timelike unit vector uM as in eq. (3.55).

Note that the Riemannian volume is given by vg = λ2v4 = λ2d4x. Also recall that ΨM

is the Hodge-dual to the 3-form H in eq. (B.47). Thus uMρM and uMΨM refer to the

volume change of a three dimensional spacelike hypersurface orthogonal to uM . Assume

that the radius of the three dimensional hypersurface is R(τ) at time τ , where τ is an

affine parameter labeling the curve of the flow. Then it is reasonable to expect that

uMρM ≈ uMΨM ≈ 2λ/R(τ) where we simply assumed that uMρM ≈ uMΨM . Then we

approximately get

uMuNT
(L)
MN ∼

1

8πG4R2
. (3.96)

If we identify the radius R with the size of cosmic horizon, LH , the energy density (3.96)

reproduces the dark energy (3.94) up to a factor.

4 Electrodynamics as a symplectic geometry

This section does contain mostly speculations. We will not intend any rigor. Rather we

will revisit the ~-deformation (1.1) to reinterpret the electrodynamics of a charged particle

in terms of symplectic geometry defined in phase space. We want to point out its beautiful

aspects since in our opinion it has not been well appreciated by physicists. Furthermore

it will provide a unifying view about U(1) gauge theory in terms of symplectic geometry.

Nevertheless our main motivation for the revival is to get some glimpse on how to introduce
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matter fields within the framework of emergent gravity. As a great bonus, it will also outfit

us with a valuable insight about how to define “Time” in the sense of emergent spacetime.

4.1 Hamiltonian dynamics and emergent time

Let us start to revisit the derivation of the Darboux theorem (2.13) due to Moser [34]. A

remarkable point in the Moser’s proof is that there always exists a one-parameter family of

diffeomorphisms generated by a smooth time-dependent vector field Xt satisfying ιXtωt +

A = 0 for the change of a symplectic structure within the same cohomology class from ω

to ωt = ω+ t(ω′−ω) for all 0 ≤ t ≤ 1 where ω′−ω = dA. The evolution of the symplectic

structure is locally described by the flow φt of Xt starting at φ0 = identity. (Of course

the “time” t here is just an affine parameter labeling the flow. At this stage it does not

necessarily refer to a physical time.) By the Lie derivative formula, we have

d

dt

(
φ∗tωt

)
= φ∗t

(
LXtωt

)
+ φ∗t

dωt

dt
= φ∗tdιXtωt + φ∗t (ω

′ − ω) = φ∗t
(
ω′ − ω − dA) = 0. (4.1)

Thus φ∗1ω
′ = φ∗0ω = ω, so φ1 provides a chart describing the evolution from ω to ω′ = ω+dA.

A whole point of the emergent gravity is the global existence of the one-parameter

family of diffeomorphisms φt describing the local deformation of a symplectic structure due

to the electromagnetic force. Therefore the electromagnetism in NC spacetime is nothing

but a symplectic geometry (at the leading order or commutative limit). Now our question

is how to understand matter fields or particles in the context of emergent geometry or

symplectic geometry.

As a first step, we want to point out that the coupling of a charged particle with

U(1) gauge fields is beautifully understood in the context of symplectic geometry [25, 26].

This time the symplectic geometry of matters is involved with the ~-deformation (1.1)

rather than the θ-deformation (1.3) which is the symplectic geometry of gravity. It is

rather natural that matters or particles are described by the symplectic geometry of the

phase space since the particles by definition are prescribed by their positions and momenta

besides their intrinsic charges, e.g., spin, electric charge, isospin, etc. We will consider only

the electric charge among their internal charges for simplicity. We refer some interesting

works [25, 26, 56, 57] addressing this problem.

Let (M,ω) be a symplectic manifold. One can properly choose local canonical coordi-

nates ya = (q1, p1, · · · , qn, pn) in M such that the symplectic structure ω can be written in

the form

ω =
n∑

i=1

dqi ∧ dpi. (4.2)

Then ω ∈ ∧2 T ∗M can be thought as a bundle map TM → T ∗M . Since ω is nondegenerate

at any point y ∈ M , we can invert this map to obtain the map ϑ ≡ ω−1 : T ∗M → TM .

This cosymplectic structure ϑ ∈ ∧2 TM is called the Poisson structure of M which defines

– 40 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
2

a Poisson bracket {·, ·}ϑ. See the footnote 6. In a local chart with coordinates ya, we have

{f, g}ϑ =

2n∑

a,b=1

ϑab ∂f

∂ya

∂g

∂yb
. (4.3)

Let H : M → R be a smooth function on a Poisson manifold M . The vector field XH

defined by ιXH
ω = dH is called the Hamiltonian vector field with the energy function H.

We define a dynamical flow by the differential equation

df

dt
= XH(f) +

∂f

∂t
= {f,H}ϑ +

∂f

∂t
. (4.4)

A solution of the above equation is a function f such that for any path γ : [0, 1] → M

we have
df(γ(t))

dt
= {f,H}ϑ(γ(t)) +

∂f(γ(t))

∂t
. (4.5)

The dynamics of a charged particle in an external static magnetic field is described by

the Hamiltonian

H =
1

2m

(
p− eA

)2
(4.6)

which is obtained by the free Hamiltonian H0 = p2

2m with the replacement

p′ = p− eA. (4.7)

Here the electric charge of an electron is qe = −e and e is a coupling constant identified with

gY M . The symplectic structure (4.2) leads to the Hamiltonian vector field XH given by

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
. (4.8)

Then the Hamilton’s equation (4.4) reduces to the well-known Lorentz force law

m
dv

dt
= ev ×B. (4.9)

An interesting observation [25] (orginally due to Jean-Marie Souriau) is that the

Lorentz force law (4.9) can be derived by keeping the Hamiltonian H = H0 but instead

shifting the symplectic structure

ω → ω′ = ω − eB (4.10)

where B(q) = 1
2Bij(q)dq

i ∧ dqj . In this case the Hamiltonian vector field XH defined by

ιXH
ω′ = dH is given by

XH =
∂H

∂pi

∂

∂qi
−
(
∂H

∂qi
− eBij

∂H

∂pj

)
∂

∂pi
. (4.11)

Then one can easily check that the Hamilton’s equation (4.4) with the vector field (4.11)

reproduces the Lorentz force law (4.9). Actually one can show that the symplectic structure
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ω′ in eq. (4.10) introduces a NC phase space [1] such that the momentum space becomes

NC, i.e., [p′i, p
′
j] = −i~eBij .

If a particle is interacting with electromagnetic fields, the influence of the magnetic

field B = dA is described by the ‘minimal coupling’ (4.7) and the new momenta p′ =

−i~(∇− i e
~
A) are covariant under U(1) gauge transformations. Let us point out that the

minimal coupling (4.7) can be understood as the Darboux transformation (2.13) between

ω and ω′. Consider the coordinate transformation ya 7→ xa(y) = (Q1, P1, · · · , Qn, Pn)(q, p)

such that
n∑

i=1

dqi ∧ dpi =

n∑

i=1

dQi ∧ dPi −
e

2

n∑

i,j=1

Bij(Q)dQi ∧ dQj (4.12)

but the Hamiltonian is unchanged, i.e., H = P2

2m . The condition (4.12) is equivalent to the

following equations

∂qi

∂Qj

∂pi

∂Qk
− ∂qi

∂Qk

∂pi

∂Qj
= −eBjk,

∂qi

∂Qj

∂pi

∂Pk
− ∂qi

∂Pj

∂pi

∂Qk
= δk

j , (4.13)

∂qi

∂Pj

∂pi

∂Pk
− ∂qi

∂Pk

∂pi

∂Pj
= 0.

The above equations are solved by

qi = Qi, pi = Pi + eAi(Q). (4.14)

In summary the dynamics of a charged particle in an electromagnetic field has two

equivalent descriptions:

(
H =

(p− eA)2

2m
,ω

)
(q, p) ∼=

(
H =

P2

2m
,ω′ = ω − eB

)
(Q,P ). (4.15)

The equivalence (4.15) can easily be generalized to a time-dependent background Aµ =

(A0,A)(q, t) with the Hamiltonian H = 1
2m

(
p−eA

)2
+eA0. The Hamilton’s equation (4.4)

in this case becomes

m
dv

dt
= e
(
E + v ×B

)
. (4.16)

The equivalence (4.15) now means that the Lorentz force law (4.16) can be obtained by the

Hamiltonian vector field (4.11) with the Hamiltonian H = p2

2m + eA0 by noticing that the

time dependence of the external fields now appears as the explicit t-dependence of momenta

pi = pi(t). Indeed the electric field E appears as the combination E = −∇A0 + 1
e

∂p
∂t . But

note that the coordinates (qi, pi) in eq. (4.11) correspond to (Qi, Pi) in the notation (4.12)

and so ∂p
∂t = −e∂A

∂t by eq. (4.14).

In a very charming paper [26], Dyson explains the Feynman’s view about the electro-

dynamics of a charged particle. Feynman starts with an assumption that a particle exists

with position qi and velocity q̇i satisfying commutation relations

[qi, qj] = 0, m[qi, q̇j] = i~δi
j . (4.17)
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Then he asks a question: What is the most general form of forces appearing in the Newton’s

equation consistent with the commutation relation (4.17) ? Remarkably he ends up with

the electromagnetic force (4.16). In a sense, the Feynman’s result is a no-go theorem for

the consistent interaction of particles in quantum mechanics. The only room for some

modification to the Feynman’s argument seems to introduce internal degrees of freedom

such as spin, isospin, color, etc [56]. Then a particle motion is defined on R3 × F with an

internal space F . The dynamics of the particle carrying an internal charge in F is defined

by a symplectic structure on T ∗R3 × F . See [56] for some details.

The Feynman’s approach clearly shows that the electromagnetism is an inevitable

structure in quantum particle dynamics. Furthermore, as emphasized by Dyson, the Feyn-

man’s formulation shows that nonrelativistic Newtonian mechanics and relativistic Maxwell

equations are coexisting peacefully. This is due to the gauge symmetry that the Lorentz

force (4.16) is generated by the minimal coupling pµ → Pµ ≡ pµ − eAµ. Moreover,

Souriau and Sternberg show that the minimal coupling can be encoded into the defor-

mation of symplectic structure, which can be summarized as the relativistic form [57]:

ω = −dξ → ω′ = ω − eF = −d
(
ξ + eA

)
where ξ = PµdQ

µ and A = Aµ(Q)dQµ.

Therefore the Maxwell equation dF = 0 is simply interpreted as the closedness of the

symplectic structure.

Now we have perceived that the dynamics of a charged particle can be interpreted

as a symplectic geometry in phase space. The evolution of the system is described by

the dynamical flow (4.5) generated by a Hamiltonian vector field, e.g., eq. (4.8), for a

given Hamiltonian H. Basically, the time in the Hamilton’s equation (4.4) is an affine

parameter to trace out the history of a particle and it is operationally defined by the

Hamiltonian. Therefore the time in the Hamiltonian dynamics is intrinsically assigned

to the particle itself. But we have to notice that, only when the symplectic structure is

fixed for a given Hamiltonian, the evolution of the system is completely determined by the

evolution equation (4.4). In this case the dynamics of the system can be formulated in

terms of an evolution with a single time parameter. In other words, we have a globally

well-defined time for the evolution of the system. This is the usual situation we consider

in classical mechanics.

We observed the equivalence (4.15) for the dynamics of a charged particle. Let us

consider a dynamical evolution described by the change of a symplectic structure from ω

to ωt = ω + t(ω′ − ω) for all 0 ≤ t ≤ 1 where ω′ − ω = −edA. The Moser lemma (4.1)

says that there always exists a one-parameter family of diffeomorphisms generated by a

smooth time-dependent vector field Xt satisfying ιXtωt = eA. Although the vector field Xt

defines a dynamical one-parameter flow, the vector field Xt is in general not even a locally

Hamiltonian since dA = B 6= 0. The evolution of the system in this case is locally described

by the flow φt of Xt starting at φ0 = identity but it is no more a (locally) Hamiltonian flow.

That is, there is no well-defined or global time for the particle system. The flow can be a

(locally) Hamiltonian, i.e., φt = identity for all 0 ≤ t ≤ 1, only for dA = 0. In other words,

the time flow φt of Xt defined on a local chart describes a local evolution of the system.

Let us summarize the above situation by looking at the familiar picture in eq. (4.15)

by fixing the symplectic structure but instead changing the Hamiltonian. (Note that the
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magnetic field in the Lorentz force (4.9) does not do any work. So there is no energy flow

during the evolution.) At time t = 0, the system is described by the free Hamiltonian

H0 but it ends up with the Hamiltonian (4.6) at time t = 1. Therefore the dynamics of

the system cannot be described with a single time parameter covering the entire period

0 ≤ t ≤ 1. We can introduce at most a local time during δt < ǫ on a local patch and

smoothly adjust to a neighboring patch. To say, a clock of the particle will tick each time

with a different rate since the Hamiltonian of the particle is changing during time evolution.

We have faced a similar situation in the θ-deformation (1.3) as summarized in eq. (4.1).

Of course one should avoid a confusion between the dynamical evolution of particle sys-

tem related to the phase space (1.1) and the dynamical evolution of spacetime geometry

related to the NC space (1.3). But we should get an important lesson from Souriau and

Sternberg [25] that the Hamiltonian dynamics in the presence of electromagnetic fields can

be described by the deformation of symplectic structure of phase space. More precisely,

we observed that the emergent geometry is defined by a one-parameter family of diffeo-

morphisms generated by a smooth vector field Xt satisfying ιXtωt +A = 0 for the change

of a symplectic structure within the same cohomology class from ω to ωt = ω + t(ω′ − ω)

for all 0 ≤ t ≤ 1 where ω′ − ω = dA. The vector field Xt is in general not a Hamil-

tonian flow, so any global time cannot be assigned to the evolution of the symplectic

structure ωt. But, if there is no fluctuation of symplectic structure, i.e., F = dA = 0 or

A = −dH, there can be a globally well-defined Hamiltonian flow. In this case we can define

a global time by introducing a unique Hamiltonian such that the time evolution is defined

by df/dt = XH(f) = {f,H}θ=ω−1 everywhere. In particular, when the initial symplectic

structure ω is constant (homogeneous), a clock will tick everywhere at the same rate. Note

that this situation happens for the constant background (3.1) from which a flat spacetime

emerges as we observed in section 3.4. But, if ω is not constant, the time evolution will not

be uniform over the space and a clock will tick at the different rate at different places. This

is consistent with Einstein gravity since a nonconstant ω corresponds to a curved space in

our picture.

We suggest the concept of “Time” in emergent gravity as a contact manifold (R×M, ω̃)

where (M,ω) is a symplectic manifold and ω̃ = π∗2ω is defined by the projection π2 :

R×M →M, π2(t, p) = p. See section 5.1 in [32] for time dependent Hamiltonian systems.

A question is then how to recover the (local) Lorentz symmetry in the end. As we pointed

out above, if (M,ω) is a canonical symplectic manifold, i.e., M = R2n and ω=constant, a

(2n+1)-dimensional Lorentz symmetry will appear from the contact manifold (R×M, ω̃).

(So our (3 + 1)-dimensional Lorentzian world needs a more general argument. See the

footnote 13.) Once again, the Darboux theorem says that there always exists a local

coordinate system where the symplectic structure is of the canonical form. See the table

2. Then it is quite plausible that the local Lorentz symmetry would be recovered in the

previous way on a local Darboux chart. Furthermore, the Feynman’s argument [26] implies

that the Lorentz symmetry is just derived from the symplectic structure on the contact

manifold (R ×M, ω̃). For example, one can recover the gauge symmetry along the time

direction by defining the Hamiltonian H = A0 +H ′ and the time evolution of a spacetime

geometry by the Hamilton’s equation D0f ≡ df/dt + {A0, f}eθ=eω−1 = {f,H ′}eθ=eω−1. And
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then one may interpret the Hamilton’s equation as the infinitesimal version of an inner

automorphism like eq. (3.17), which was indeed used to define the vector field D0(X) in

eq. (3.30).

Our proposal for the emergent time is based on the fact that a symplectic manifold

(M,ω) always admits a Hamiltonian dynamical system on M defined by a Hamiltonian

vector field XH , i.e., ιXH
ω = dH. The purpose to pose the issue of “Emergent Time”

is to initiate and revisit this formidable issue after a deeper understanding of emergent

gravity. We refer here some related works for future references: Our proposal is closely

related to the picture in [58], where the time is basically defined by a one-parameter group

of automorphisms of a von Neumann algebra. Note that the deformation quantization of

a Poisson manifold [31] also exhibits a similar automorphism D(~) in eq. (3.62) acting on

star-products. section 5.5 in [32] and chapter 21 in [30] (and references therein) provide

an exposition on infinite-dimensional Hamiltonian systems, especially, the Hamiltonian

formulation of Einstein gravity.

4.2 Matter fields from NC spacetime

Now let us pose our original problem about what matters are in emergent geometry. We

will not intend to solve the problem. Instead we will suggest a plausible picture based on

the Fermi-surface scenario in [27, 28]. We will return to this problem with more details in

the next publication.

Particles are by definition characterized by their positions and momenta besides their

intrinsic charges, e.g., spin, isospin and an electric charge. They should be replaced by

a matter field in a relativistic quantum theory in order to incorporate pair creations and

annihilations. Moreover, in a NC space such as (3.1), the very notion of a point is replaced

by a state in the Hilbert space (3.2) and thus the concept of particles (and matter fields

too) becomes ambiguous. So a genuine question is what is the most natural notion of a

particle or a corresponding matter field in the NC ⋆-algebra (3.3). We suggest it should be

a K-theory object in the sense of [27].

Let us briefly summarize the K-theory picture in [27]. Hořava considers nonrelativistic

fermions in (d+ 1)-dimensional spacetime having N complex components. Gapless excita-

tions are supported on a (d− p)-dimensional Fermi surface Σ in (k, ω) space. Consider an

inverse exact propagator

Ga
a′

= δa′

a (iω − k2/2m+ µ) + Πa
a′

(k, ω) (4.18)

where Πa
a′

(k, ω) is the exact self-energy and a, a′ = 1, · · · , N . Assuming that G has a

zero along a submanifold Σ of dimension d− p in the (d+ 1)-dimensional (k, ω) space, the

question of stability of the manifold Σ of gapless modes reduces to the classification of the

zeros of the matrix G that cannot be lifted by small perturbations Πa
a′

. Consider a sphere

Sp wrapped around Σ in the transverse p + 1 dimensions in order to classify stable zeros.

The matrix G is nondegenerate along this Sp and therefore defines a map

G : Sp → GL(N,C) (4.19)
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from Sp to the group of nondegenerate complex N × N matrices. If this map represents

a nontrivial class in the pth homotopy group πp(GL(N,C)), the zero along Σ cannot be

lifted by a small deformation of the theory. The Fermi surface is then stable under small

perturbations, and the corresponding nontrivial element of πp(GL(N,C)) represents the

topological invariant responsible for the stability of the Fermi surface. As a premonition,

we mention that it is enough to regard the Fermi surface Σ as a (stable) vacuum manifold

with a sharp Fermi momentum pF where all small excitations are supported, regardless of

fermions themselves.

A remarkable point is that there is the so-called stable regime at N > p/2 where

πp(GL(N,C)) is independent of N . In this stable regime, the homotopy groups of

GL(N,C) or U(N) define a generalized cohomology theory, known as K-theory [59–61].

In K-theory which involves vector bundles and gauge fields, any smooth manifold X is

assigned an Abelian group K(X). Aside from a deep relation to D-brane charges and RR

fields in string theory [59, 60], the K-theory is also deeply connected with the theory of

Dirac operators, index theorem, Riemannian geometry, NC geometry, etc. [41].

Let us look at the action (3.9) recalling that it describes fluctuations around a vacuum,

e.g., eq. (3.1). One may identify the map (4.19) with the gauge-Higgs system (Aµ,Φ
a)(z)

as the maps from Rd
C to U(N →∞). More precisely, let us identify the (d−p)-dimensional

Fermi surface Σ with R2n
NC described by eq. (3.1) and the (p + 1)-dimensional transverse

space with X = Rd
C . In this case the Fermi surface Σ is defined by the vacuum (3.1) whose

natural energy scale is the Planck energy EP l as we observed in section 3.4, so the Fermi

momentum pF is basically given by EP l. The magic of Fermi surface physics is that gapless

excitations near the Fermi surface easily forget the possibly huge background energy.

Now we want to consider gapless fluctuations supported on the Fermi surface Σ. The

matrix action in eq. (3.9) shows that Rd
C is not only a hypersurface but also supports a

U(N → ∞) gauge bundle. This is the reason [60, 61] why K(X) comes into play to clas-

sify the topological class of excitations in the U(N) gauge-Higgs system. As we observed

in section 3.4, a generic fluctuation in eq. (3.23) will noticeably deform the background

spacetime lattice defined by the Fock space (3.2) and it will generate non-negligible gravi-

tational fields. But our usual concept of particle is that it does not appreciably disturb the

ambient gravitational field. This means that the gapless excitation should be a sufficiently

localized state in R2n
NC . In other words, the state is described by a compact operator in Aθ,

e.g., a Gaussian rapidly vanishing away from y ∼ y0 or the matrix elements for a compact

operator Φ̂ ∈ Aθ in the representation (3.5) are mostly vanishing excepts a few elements.

A typical example satisfying these properties is NC solitons, e.g., GMS solitons [62].

Since a gauge invariant observable in NC gauge theory is characterized by its momen-

tum variables as we discussed in section 3.2, it will be rather useful to represent the state

in momentum space. Another natural property we impose is that it should be stable up to

pair creations and annihilations. Therefore it must be generated by the K-theory group of

the map (4.19) [59–61], where we will identify the NC ⋆-algebra Aθ with GL(N,C) using

the relation (3.6). Note that the map (4.19) is contractible to the group of maps from X

to U(N).
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With the above requirements in mind, let us find an explicit construction of a topo-

logically non-trivial excitation. It is well-known [61] that this can be done using an elegant

construction due to Atiyah, Bott and Shapiro (ABS) [63]. The construction uses the

gamma matrices of the transverse rotation group SO(p, 1) for X = Rd
C to construct ex-

plicit generators of πp(U(N)) where d = p+ 1. Let X be even dimensional and S± be two

irreducible spinor representations of Spin(d) Lorentz group and pµ (µ = 0, 1, · · · , p) be the

momenta along X, transverse to Σ in (k, ω). We define the gamma matrices Γµ : S+ → S−
of SO(p, 1) to satisfy {Γµ,Γν} = 2ηµν . At present we are considering excitations around

the constant vacuum (3.1) and so the vacuum geometry is flat. But, if we considered ex-

citations in a nontrivial vacuum such as eq. (3.67), the vacuum manifold might be curved.

So the Clifford algebra in this case would be replaced by {Γµ,Γν} = 2gµν where the metric

gµν is given by eq. (3.71). Finally we introduce an operator D : H × S+ → H × S− [27]

such that

D = Γµpµ + · · · (4.20)

which is regarded as a linear operator acting on a Hilbert space H, possibly much smaller

than the Fock space (3.2), as well as the spinor vector space S±.

The ABS construction implies [27, 28] that the Dirac operator (4.20) is a generator of

πp(U(N)) as a nontrivial topology in momentum space (k, ω) where the low lying excita-

tions in eq. (4.19) near the Fermi surface Σ carry K-theory charges and so they are stable.

Such modes are described by coarse-grained fermions χA(ω,p, θ) with θ denoting collective

coordinates on Σ and p being the spatial momenta normal to Σ [27]. The ABS construction

determines the range Ñ of the index A carried by the coarse-grained fermions χA to be

Ñ = 2[p/2]n ≤ N complex components. The precise form of the fermion χA depends on its

K-theory charge whose explicit representation on H × S± will be determined later. And

we will apply the Feynman’s approach [26] to see what the multiplicity n means. For a

moment, we put n = 1. At low energies, the dispersion relation of the fermion χA near the

Fermi surface is given by the relativistic Dirac equation

iΓµ∂µχ+ · · · = 0 (4.21)

with possible higher order corrections in higher energies. Thus we get a spinor of the

Lorentz group SO(p, 1) from the ABS construction as a topological solution in momentum

space. For example, in four dimensions, i.e., p = 3, χA has two complex components and

so it describes a chiral Weyl fermion.

Although the emergence of (p+1)-dimensional spinors is just a consequence due to the

fact that the ABS construction uses the Clifford algebra to construct explicit generators of

πp(U(N)), it is mysterious and difficult to understand its physical origin. But we believe

that the fermionic nature of the excitation χ is originated from some unknown Planck

scale physics. For example, if the Dirac operator (4.20) is coming from GMS solitons [62] in

R2n
NC , the GMS solitons correspond to eigenvalues of N×N matrices in eq. (3.6). As is well

known from c = 1 matrix models, the eigenvalues behave like fermions, although it is the

(1+1)-dimensional sense, after integrating out off-diagonal interactions. Another evidence

is the stringy exclusion principle [64] that the AdS/CFT correspondence puts a limit on
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the number of single particle states propagating on the compact spherical component of

the AdSp × Sq geometry which corresponds to the upper bound on U(1) charged chiral

primaries on the compact space Sq.

It should be important to clearly understand the origin of the fermionic nature of

particles arising from the vacuum (3.1). The crux seems to be the mysterious connection

between the Clifford modules and K-theories [63]. Another related problem is that we

didn’t yet understand the dynamical origin of the particle symplectic structure (4.2). Is

it similarly possible to get some insight about the particle mass and dark matters from

the dynamical origin of the symplectic structure (4.2) as we did in section 3.4 for the dark

energy ? If the vacuum (3.1) acts as a Fermi surface for quarks and leptons, is it a symptom

that the local electroweak symmetry can be broken dynamically without Higgs ?

Now let us address the problem how to determine the multiplicity n of the coarse-

grained fermions χαa where we decomposed the index A = (αa) with α the spinor index

of the SO(d) Lorentz group and a = 1, · · · , n an internal index of an n-dimensional rep-

resentation of some compact symmetry G. One may address this problem by considering

the quantum particle dynamics on X × Σ and repeating the Feynman’s question. To be

specific, we restrict (collective) coordinates of Σ, denoted as QI (I = 1, · · · , n2 − 1), to Lie

algebra variables such as the particle isospins or colors. So the commutation relations we

consider are

[QI , QJ ] = if IJKQK , (4.22)

[qi, QI ] = 0 (4.23)

together with the commutation relations (4.17) determined by the symplectic struc-

ture (4.2) on T ∗Rp.

Then the question is: What is the most general form of forces consistent with the

commutation relations (4.17), (4.22) and (4.23) ? It was already answered in [56] that the

answer is just the non-Abelian version of the Lorentz force law (4.16) with an additional

set of equations coming from the condition that the commutation relation (4.23) should be

preserved during time evolution, i.e., d
dt [q

i, QI ] = 0. This condition can be solved by the

so-called Wong’s equations

Q̇I + f IJKAJ
i Q

K q̇i = 0. (4.24)

The Wong’s equations just say that the internal charge QI is parallel-transported along

the trajectory of the particle under the influence of the non-Abelian gauge field AJ
i .

Therefore the quantum particle dynamics on X × Σ naturally requires to introduce

non-Abelian gauge fields in the representation of the Lie algebra (4.22). And the dynamics

of the particle carrying an internal charge in Σ should be defined by a symplectic structure

on T ∗X×Σ. But note that we have a natural symplectic structure on Σ defined by eq. (3.1).

Also note that we have only U(1) gauge fields on X × Σ in eq. (3.7). So the problem is

how to get the Lie algebra generators in eq. (4.22) from the space Σ = R2n
NC and how to

get the non-Abelian gauge fields AI
µ(z) on X from the U(1) gauge fields on X × Σ where

zµ = (t, qi).
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The problem is solved by noting that the n-dimensional harmonic oscillator in quantum

mechanics can realize SU(n) symmetries (see the chapter 14 in [65]). The generators of the

SU(n) symmetry on the Fock space (3.2) are given by

QI = a†iT
I
ikak (4.25)

where the creation and annihilation operators are given by eq. (3.1) and T I ’s are con-

stant n × n matrices satisfying [T I , T J ] = if IJKTK with the same structure constants as

eq. (4.22). It is easy to check that the QI ’s satisfy the SU(n) Lie algebra (4.22). We in-

troduce the number operator Q0 ≡ a†iai and identify with a U(1) generator. The operator

C =
∑

I Q
IQI is the quadratic Casimir operator of the SU(n) Lie algebra and commutes

with all QI ’s. Thus one may identify C with an additional U(1) generator.

Let ρ(V ) be a representation of the Lie algebra (4.22) in a vector space V . We take

an n-dimensional representation in V = Cn or precisely V = L2(Cn), a square integrable

Hilbert space. Now we expand the U(1) gauge field ÂM (z, y) in eq. (3.7) in terms of the

SU(n) basis (4.25)

ÂM (z, y) =

∞∑

n=0

∑

Ii∈ρ(V )

AI1···In

M (z, ρ, λn) QI1 · · ·QIn

= AM (z) +AI
M (z, ρ, λ1) Q

I +AIJ
M (z, ρ, λ2) Q

IQJ + · · · (4.26)

where ρ and λn are eigenvalues of Q0 and C, respectively, in the representation ρ(V ). The

expansion (4.26) is formal but it is assumed that each term in eq. (4.26) belongs to the

irreducible representation of ρ(V ). Thus we get SU(n) gauge fields AI
µ as well as adjoint

scalar fields AI
a in addition to U(1) gauge fields AM (z) as low lying excitations.

Note that the coarse-grained fermion χ in eq. (4.21) behaves as a relativistic particle in

the spacetimeX = Rd
C and a stable excitation as long as the Fermi surface Σ is topologically

stable. In addition to these fermionic excitations, there will also be bosonic excitations

arising from changing the position in X of the surface Σ or deformations of the surface Σ

itself. But the latter effect (as gravitational fields in Σ) will be very small and so can be

ignored since we are interested in the low energy behavior of the Fermi surface Σ. Then

the gauge fields in eq. (4.26) represent collective modes for the change of the position in

X = Rd
C of the surface Σ [28]. They can be regarded as collective dynamical fields in the

vicinity of the Fermi surface Σ acting on the fermions in eq. (4.21).

Therefore we regard the Dirac operator (4.20) as an operator D : H × S+ → H× S−
where H = L2(Cn) and introduce a minimal coupling with the U(1) and SU(n) gauge

fields in eq. (4.26) by the replacement pµ → pµ − eAµ − AI
µQ

I . Then the Dirac

equation (4.21) becomes

iΓµ(∂µ − ieAµ − iAI
µQ

I)χ+ · · · = 0. (4.27)

Here we see that the coarse-grained fermion χ in the homotopy class πp(U(N)) is in the

fundamental representation of SU(n). So we identify the multiplicity n in the ABS con-

struction (4.21) with the number of colors. Unfortunately the role of the adjoint scalar

fields in eq. (4.26) is not obvious from the Feynman’s approach.
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The most interesting case in eq. (3.9) is that p = 3 and n = 3, that is, 10-dimensional

NC U(1) gauge theory on R4
C ×R6

NC . In this case eq. (4.27) is the 4-dimensional Dirac

equation where χ is a quark, an SU(3) multiplet of chiral Weyl fermions, coupling with

gluons AI
µ(z), SU(3) gauge fields for the color charge QI , as well as photons Aµ(z), U(1)

gauge fields for the electric charge e. One may consider a similar ABS construction in the

vector space V = C2 ×C, i.e., by breaking the SU(3) symmetry to SU(2) × U(1), to get

SU(2) gauge fields and chiral Weyl fermions. In this case QI (I = 1, 2, 3) in eq. (4.25) are

the famous Schwinger representation of SU(2) Lie algebra.

5 Musing on noncommutative spacetime

It is a well-accepted consensus that at very short distances, e.g., the Planck scale LP , the

spacetime is no longer commutating due to large quantum effects and a NC geometry will

play a role at short distances. In addition, the spacetime geometry at the Planck scale is

not fixed but violently fluctuating, as represented as spacetime foams. Therefore the NC

geometry arising at very short distances has to be intimately related to quantum gravity.

The Moyal space (1.3) is the simplest and the most natural example of NC spacetime.

Thus it should be expected that the physical laws defined in the NC spacetime (1.3), for

instance, a NC field theory, essentially refer to a theory of (quantum) gravity. This is the

reason why the θ-deformation in the table 1 must be radical as much as the ~-deformation.

Unfortunately, the NC field theory has not been explored as a theory of gravity so far.

It has been studied as a theory of particles within the conventional framework of quantum

field theory. But we have to recognize that the NC field theory is a quantum field theory

defined in a highly nontrivial vacuum (3.1). It should be different from usual quantum field

theories defined in a trivial vacuum. So we should be careful to correctly identify order

parameters for fluctuations around the vacuum (3.1). We may have a wrong choice of the

order parameter if we naively regard the NC field theory as a theory of particles only. As an

illustrating example, in order to describe the superconductivity at T . Tc, it is important

to consider an effect of the background lattice and phonon exchange with electrons. The

interaction of electrons with the background lattice is resulted in a new order parameter,

the so-called Cooper pairs, and a new attractive force between them. We know that it is

impossible to have a bound state of two electrons, the Cooper pair, in a trivial vacuum, i.e.,

without the background lattice. Thus the superconductivity is an emergent phenomenon

from electrons moving in a nontrivial background lattice.

We observed that the vacuum (3.1) endows the spacetime with a symplectic structure

whose surprising consequences, we think, have been considerably explored in this paper.

For example, it brings to the correspondence (3.6) implying the large N duality or the

gauge/gravity duality. These features do not arise in ordinary quantum field theories. So

it would be desirable to seriously contemplate about the theoretical structure of NC field

theories from the spacetime point of view.
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5.1 Graviton as a Cooper pair

Graviton is a spin-2 particle. Therefore the emergent gravity, if the picture is true, should

come from a composite of two spin-1 gauge bosons, not from gauge fields themselves.22 Un-

fortunately, there is no rigorous proof that the bound state of two spin-1 gauge bosons does

exist in NC spacetime. But an interesting point is that NC spacetime is more preferable to

the formation of bound states compared to commutative spacetime. See, for example, [66].

Salient examples are GMS solitons [62] and NC U(1) instantons [67], which are not allowed

in a commutative spacetime. Furthermore there are many logical evidences that it will

be true, especially inferred from the matrix formulation of NC gauge theory as we briefly

discuss below.

For definiteness, let us consider the case with d = 4 and n = 3 for the action (3.9), that

is, 10-dimensional NC U(1) gauge theory on R4
C ×R6

NC . The matrix representation in the

action (3.9) is precisely equal to the bosonic part of 4-dimensional N = 4 supersymmetric

U(N) Yang-Mills theory which is known to be equivalent to the type IIB string theory on

AdS5×S5 space [24]. Therefore the 10-dimensional gravity emergent from NC gauge theory

will essentially be the same as the one in the AdS/CFT duality. The bulk graviton gµν(z, ρ)

in the AdS/CFT duality, whose asymptotics at ρ = 0 is given by the metric (3.89), is defined

by the coupling to the energy-momentum tensor Tµν(z) in the U(N) gauge theory. The

energy-momentum tensor Tµν(z) is a spin-2 composite operator in the gauge theory rather

than a fundamental field. This means that the bulk graviton is holographically defined as

a bound state of two spin-1 gauge bosons. Schematically, we have the following relation

(1⊗ 1)S ⇄ 2⊕ 0 or ⊂ ⊗ ⊃⇄ ©. (5.1)

Indeed the core relation (5.1) has underlain the unification theories since Kaluza and

Klein. In early days people have tried the scheme (←) under the name of the Kaluza-

Klein theory. A basic idea in the Kaluza-Klein theory (including string theory) is to

construct spin-1 gauge fields plus gravity in lower dimensions from spin-2 gravitons in

higher dimensions. An underlying view in this program is that a “fundamental” theory

exists as a theory of gravity in higher dimensions and a lower dimensional theory of spin-

1 gauge fields is derived from the higher dimensional gravitational theory. Though it is

mathematically beautiful and elegant, it seems to be physically unnatural if the higher spin

theory should be regarded as a more fundamental theory.

After the discovery of D-branes in string theory, people have realized that the scheme

(→) is also possible, which is now known as the open-closed string duality or the

gauge/gravity duality. But the scheme (→) comes into the world in a delicate way since

there is a general no-go theorem known as the Weinberg-Witten theorem [68, 69], stating

that an interacting graviton cannot emerge from an ordinary quantum field theory in the

same spacetime. One has to notice, however, that Weinberg and Witten introduced two

basic assumptions to prove this theorem. The first hidden assumption is that gravitons

and gauge fields live in the same spacetime. The second assumption is the existence of a

Lorentz-covariant stress-energy tensor. The AdS/CFT duality [24] realizes the emergent

22We thank Piljin Yi for raising this critical issue.
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gravity by relaxing the first assumption in the way that gravitons live in a higher dimen-

sional spacetime than gauge fields. As we observed in section 3.4, the NC field theory is

even more radical in the sense that the Lorentz symmetry is not a fundamental symmetry of

the theory but emergent from the vacuum algebra (3.1) defined by a uniform configuration

of NC gauge fields.

Another ingredient supporting the existence of the spin-2 bound states is that the

vacuum (3.1) in NC gauge theory signifies the spontaneous symmetry breaking of the

Λ-symmetry (2.11) [3]. If one considers a small fluctuation around the vacuum (3.1) pa-

rameterized by eq. (2.32), the spacetime metric given by eq. (3.42) looks like

gMN = ηMN + hMN (5.2)

where ηMN = 〈gMN 〉 is the flat metric determined by the uniform condensation of gauge

fields in the vacuum. As a fluctuating (quantum) field, the existence of the vacuum expec-

tation value in the metric 〈gMN 〉 = ηMN also implies some sort of spontaneous symmetry

breaking as Zee anticipated in [40] (see the footnote 8). We see here that they indeed

have the same origin. If one look at the table 2, one can see a common property that

both a Riemannian metric g and a symplectic structure ω should be nondegenerate, i.e.,

nowhere vanishing on M . In the context of physics where g and ω are regarded as a field,

the nondegeneracy means a nonvanishing vacuum expectation value. We refer to [3] more

discussions about the spontaneous symmetry breaking.

Instead we will discuss an interesting similarity between the BCS superconductivity [29]

and the emergent gravity to get some insight into the much more complicated spontaneous

symmetry breaking for the Λ-symmetry (2.11). A superconductor of any kind is nothing

more or less than a material in which the G = U(1) gauge symmetry is spontaneously

broken to H = Z2 which is the 180o phase rotation preserved by Cooper pairs [70]. The

spontaneous breakdown of electromagnetic gauge invariance arises because of attractive

forces between electrons via lattice vibrations near the Fermi surface. In consequence of this

spontaneous symmetry breaking, products of any even number of electron fields have non-

vanishing expectation values in a superconductor, captured by the relation 1
2⊗ 1

2 = 0⊕1. As

we mentioned above, the emergent gravity reveals a similar pattern of spontaneous symme-

try breaking though much more complicated where the Λ-symmetry (2.11), or equivalently

G = Diff(M), is spontaneously broken to the symplectomorphism (2.23), or equivalently

H = U(1)NC gauge symmetry. The spontaneous breakdown of the Λ-symmetry or G =

Diff(M) is induced by the condensate (3.1) of gauge fields in a vacuum and conceivably

the vacuum (3.1) can act as a Fermi surface for low energy excitations, as we discussed in

section 4.2.

Then we may find a crude but inciting analogy between the BCS superconductivity

and the emergent gravity:

The Landau-Ginzburg theory is a phenomenological theory of superconductivity where

the free energy of a superconductor near T ≈ Tc can be expressed in terms of a complex

order parameter, describing Cooper pairs [70]. Of course this situation is analogous to the

emergent gravity in the sense that Einstein gravity as a macroscopic description of NC

gauge fields is manifest only at the commutative limit, i.e., |θ| → 0. Although we should

– 52 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
2

Theory Superconductivity Emergent gravity

Microscopic degree of freedom electron gauge field

Order parameter Cooper pair graviton

G U(1) Diff(M)

H Z2 U(1)NC

Control parameter Tc

T − 1 θab

Macroscopic description Laudau-Ginzburg Einstein gravity

Microscopic description BCS gauge theory

Table 3. Superconductivity vs. Emergent gravity.

be cautious to employ the analogy in the table 3, it may be worthwhile to remark that the

flux tubes or Abrikosov vortices in type II superconductors, realized as a soliton solution

in the Landau-Ginzburg theory, seem to be a counterpart of black holes in the emergent

gravity. We think the table 3 could serve as a guidepost more than a plain analogy to

understand a detailed structure of emergent gravity.

5.2 Fallacies on noncommutative spacetime

As was remarked before, a NC spacetime arises as a result of large quantum fluctuations

at very short distances. So the conventional spacetime picture gained from a classical

and weak gravity regime will not be naively extrapolated to the Planck scale. Indeed we

perceived that a NC geometry reveals a novel, radically different picture about the origin

of spacetime.

But the orthodox approach so far has regarded the NC spacetime described by eq. (3.1),

for instance, as an additional background condensed on an already existing spacetime. For

example, field theories defined on the NC spacetime have been studied from the conven-

tional point of view based on the traditional spacetime picture. Then the NC field theory

is realized with unpleasant features, breaking the Lorentz symmetry and locality which are

two fundamental principles underlying quantum field theories. A particle in local quantum

field theories is defined as a state in an irreducible representation of the Poincaré symmetry

and internal symmetries. This concept of the particle becomes ambiguous in the NC field

theory due to not only the lack of the Lorentz symmetry but also the non-Abelian nature

of spacetime. Furthermore the nonlocality in NC field theories appears as a perplexing

UV/IR mixing in nonplanar Feynman diagrams in perturbative dynamics [55]. This would

appear to spoil the renormalizability of these theories [1].

Therefore the NC field theory is not an eligible generalization of quantum field theory

framework as a theory of particles. However, these unpleasant aspects of the NC field

theory turn into a welcome property or turn out to be a fallacy whenever one realizes it as

a theory of gravity. We believe that the nonperturbative dynamics of gravity is intrinsically

nonlocal. A prominent evidence is coming from the holographic principle [71] which states

that physical degrees of freedom in gravitational theories reside on a lower dimensional

screen where gauge fields live. The AdS/CFT duality [24] is a thoroughly tested example

of the holographic principle. Recently it was shown in [18, 19] that the UV/IR mixing in
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NC gauge theories can be interpreted as a manifestation of gravitational nonlocality in the

context of emergent gravity. This elegant shift of wing signifies an internal consistency of

emergent gravity.

The basic idea of emergent gravity is to view the gravity as a collective phenomenon of

gauge fields. According to Einstein, the gravity is nothing but the dynamics of spacetime

geometry. This perspective implies that there is no prescribed notion of spacetime. The

spacetime must also be emergent from or defined by gauge fields if the picture is anyway

correct. We observed in section 3.4 that the emergent gravity reveals a novel and consis-

tent picture about the dynamical origin of spacetime. The most remarkable angle is the

dynamical origin of flat spacetime, which is absent in Einstein gravity. It turned out that

the Lorentz symmetry as well as the flat spacetime is not a priori given in the beginning

but emergent from or defined by the uniform condensation (3.1) of gauge fields. In the

prospect, the Lorentz symmetry is not broken by the background (3.1) but rather emergent

at the cost of huge energy condensation in the vacuum. Thus the emergent gravity also

comes to the rescue of the Lorentz symmetry breaking in NC field theories.

But we want to point out an intriguing potential relation between the dark en-

ergy (3.94) and a possible tiny violation of the Lorentz symmetry. We observed that

the energy density (3.94) is due to the cosmological vacuum fluctuation around the flat

spacetime and does generate an observable effect of spacetime structure, e.g., an expansion

of universe. Furthermore, since the tiny energy (3.94) represents a deviation from the flat

spacetime over the cosmological scale, it may have another observable effect of spacetime

structure; a very tiny violation of the Lorentz symmetry. Amusingly, the dark energy scale

∼ 2×10−3eV given by (3.93) is of the same order of magnitude as the neutrino mass. This

interesting numerical coincidence may imply some profound relation between the neutrino

mass and the tiny violation of the Lorentz symmetry [72].

6 Discussion

Mathematicians do not study objects, but relations between objects. Thus, they

are free to replace some objects by others so long as the relations remain un-

changed. Content to them is irrelevant: they are interested in form only.

– Henri Poincaré (1854-1912)

Recent developments in string and M theories, especially, after the discovery of D-

branes, have constantly revealed that string and M theories are not very different from

quantum field theories. Indeed a destination of nonperturbative formulations of string and

M theories has often been quantum field theories again. For instance, the AdS/CFT duality

and the matrix models in string and M theories are only a few salient examples. It seems

to insinuate a message that quantum field theories already contain ‘quantum gravity’ in

some level. At least we have to contemplate our credulous belief that the string and M

theories should be superordinate to quantum field theories. Certainly we are missing the

first (dynamical) principle to derive the quantum gravity from quantum field theories.
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Throughout the paper, we have emphasized that quantum field theories in NC space-

time are radically different from their commutative counterparts and they should be re-

garded as a theory of gravity rather than a theory of particles. So the important message

we want to draw is that the θ-deformation in the table 1 should be seriously considered

as a foundation for quantum gravity. In other words, the first principle would be the ge-

ometrization of gauge fields based on the symplectic and NC geometry. It my be possible

that the NC geometry also underlies the fundamentals of string theory.

In this paper, we have mostly focussed on the commutative limit, θ → 0, where the

Einstein gravity manifests itself as a macroscopic spacetime geometry of NC ⋆-algebra

defined by gauge fields in NC spacetime. That is, Einstein gravity is just a low energy

effective theory of NC gauge fields or large N matrices. So we naturally wonder what

happens in a deep NC space. An obvious guess is that a usual concept of spacetime

based on a smooth geometry will be doomed. Instead an operator algebra, e.g., ⋆-algebra

defined by NC gauge fields, will define a relational fabric between NC gauge fields, whose

prototype at macroscopic world emerges as a smooth spacetime geometry. In a deep NC

space, an algebra between objects is more fundamental. A geometry is a secondary concept

defined by the algebra. Indeed the motto in emergent gravity is that an algebra defines

a geometry. In this scheme, one has to specify an underlying algebra to talk about a

corresponding geometry. So the Poincaré’s declaration above may also refer to physicists

who are studying quantum gravity.
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A A proof of the equivalence between self-dual NC electromagnetism

and self-dual Einstein gravity

Here we present a self-contained and friendly proof of the equivalence between self-dual

NC electromagnetism and self-dual Einstein gravity [12]. Our proof here closely follows

the result in [73] applying our observation (3.23), of course, decisive for the equivalence,

that NC gauge fields can be mapped to (generalized) vector fields through the inner au-

tomorphism (3.17). The self-dual case here will be a useful guide for deriving the general

equivalence between NC U(1) gauge theories and Einstein gravity presented in appendix B.

We introduce at each spacetime point in M a local frame of reference in the form

of 4 linearly independent vectors (vierbeins or tetrads) EA = EM
A ∂M ∈ TM which are

chosen to be orthonormal, i.e., EA · EB = δAB . The basis {EA} determines a dual basis

EA = EA
MdX

M ∈ T ∗M by

〈EA, EB〉 = δA
B . (A.1)
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The above pairing leads to the relation EA
ME

M
B = δA

B . The metric is the most basic invariant

defined by the vectors in TM or T ∗M ,

(
∂

∂s

)2

= δABEA ⊗ EB = δABEM
A EN

B ∂M ⊗ ∂N

≡ gMN (X) ∂M ⊗ ∂N (A.2)

or

ds2 = δABE
A ⊗ EB = δABE

A
ME

B
N dXM ⊗ dXN

≡ gMN (X) dXM ⊗ dXN . (A.3)

Under local frame rotations in SO(4) the vectors transform according to

EA(X)→ E′
A(X) = EB(X)ΛB

A(X),

EA(X)→ E′A(X) = ΛA
B(X)EB(X) (A.4)

where ΛA
B(X) ∈ SO(4). The spin connections ωM(X) constitute gauge fields with respect

to the local SO(4) rotations

ωM → ΛωMΛ−1 + Λ∂MΛ−1 (A.5)

and the covariant derivative is defined by

DMEA = ∂MEA − ωM
B

AEB ,

DME
A = ∂ME

A + ωM
A

BE
B . (A.6)

The connection one-form ωA
B = ωM

A
BdX

M satisfies the Cartan’s structure equa-

tions [30],

TMN
A = ∂ME

A
N − ∂NE

A
M + ωM

A
BE

B
N − ωN

A
BE

B
M , (A.7)

RMN
A

B = ∂MωN
A

B − ∂NωM
A

B + ωM
A

CωN
C

B − ωN
A

CωM
C

B, (A.8)

where we introduced the torsion two-form TA = 1
2TMN

AdXM∧dXN and the curvature two-

form RA
B = 1

2RMN
A

BdX
M ∧ dXN . Now we impose the torsion free condition, TMN

A =

DMEA
N−DNE

A
M = 0, to recover the standard content of general relativity, which eliminates

ωM as an independent variable, i.e.,

ωMBC =
1

2
EA

M (fABC − fBCA + fCAB)

= −ωMCB, (A.9)

where

fABC = EM
A EN

B (∂MENC − ∂NEMC). (A.10)

Note that fAB
C are the structure functions of the vectors EA ∈ TM defined by

[EA, EB ] = −fAB
CEC . (A.11)
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Here raising and lowering the indices A,B, · · · are insignificant with Euclidean signature but

we have kept track of the position of the indices for another use with Lorentzian signature.

Since the spin connection ωMAB and the curvature tensor RMNAB are antisymmetric

on the AB index pair, one can decompose them into a self-dual part and an anti-self-dual

part as follows

ωMAB = ω
(+)a
M ηa

AB + ω
(−)a
M η̄a

AB, (A.12)

RMNAB = F
(+)a
MN ηa

AB + F
(−)a
MN η̄a

AB (A.13)

where the 4× 4 matrices ηa
AB and η̄a

AB for a = 1, 2, 3 are ’t Hooft symbols defined by

η̄a
ij = ηa

ij = εaij , i, j ∈ {1, 2, 3},
η̄a
4i = ηa

i4 = δai. (A.14)

We list some identities of the ’t Hooft tensors

η
(±)a
AB = ±1

2
εAB

CDη
(±)a
CD , (A.15)

η
(±)a
AB η

(±)a
CD = δACδBD − δADδBC ± εABCD, (A.16)

εABCDη
(±)a
DE = ∓(δECη

(±)a
AB + δEAη

(±)a
BC − δEBη

(±)a
AC ), (A.17)

η
(±)a
AB η

(∓)b
AB = 0, (A.18)

η
(±)a
AC η

(±)b
BC = δabδAB + εabcη

(±)c
AB , (A.19)

η
(±)a
AC η

(∓)b
BC = η

(∓)b
AC η

(±)a
BC (A.20)

where η
(+)a
AB = ηa

AB and η
(−)a
AB = η̄a

AB. (Since the above ’t Hooft tensors are defined in

Euclidean R4 where the flat metric δAB is used, we don’t concern about raising and lowering

the indices.)

Using the identities (A.19) and (A.20), it is easy to see that the (anti-)self-dual curva-

ture in eq. (A.13) is purely determined by the (anti-)self-dual spin connection without any

mixing, i.e.,

F
(±)a
MN = ∂Mω

(±)a
N − ∂Nω

(±)a
M − 2εabcω

(±)b
M ω

(±)c
N . (A.21)

Of course all these separations are due to the fact, SO(4) = SU(2)L× SU(2)R, stating that

any SO(4) rotations can be decomposed into self-dual and anti-self-dual rotations. Since

εabc is the structure constant of SU(2) Lie algebra, i.e., [τa, τ b] = 2iεabcτ c where τa’s are

the Pauli matrices, one may identify ω
(±)a
M with SU(2)L,R gauge fields and F

(±)a
MN with their

field strengths.

In consequence we have arrived at the following important property. If the spin con-

nection is self-dual, i.e., ω
(−)a
M = 0, the curvature tensor is also self-dual, i.e., F

(−)a
MN = 0.

Conversely, if the curvature is self-dual, i.e., F
(−)a
MN = 0, one can always choose a self-dual

spin connection by a suitable gauge choice since F
(−)a
MN = 0 requires that ω

(−)a
M is a pure

gauge. Therefore, in this self-dual gauge, the problem of finding a self-dual solution to the

Einstein equation [74]

RMNAB = ±1

2
εAB

CDRMNCD (A.22)
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is equivalent to one of finding self-dual spin connections

ωEAB = ±1

2
εAB

CDωECD (A.23)

where ωCAB = EM
C ωMAB. Note that a metric satisfying the self-duality equation (A.22),

known as the gravitational instanton, is necessarily Ricci-flat because RMBA
B =

±1
6εA

BCDRM [BCD] = 0. The gravitational instantons defined by eq. (A.22) are then ob-

tained by solving the first-order differential equations given by eq. (A.23).

Now contracting εF
EAB on both sides of eq. (A.23) leads to the relation

ω[ABC] = ∓εABC
DφD (A.24)

where φD = ωED
E and ω[ABC] = ωABC + ωBCA + ωCAB. From eqs.(A.9) and (A.10)

together with eq. (A.24), we get

fABC = ωABC − ωBAC = −ωACB − ωBAC − ωCBA + ωCBA

= ±εACB
DφD − ωCAB (A.25)

and so

− ωCAB = fABC ± εABC
DφD. (A.26)

The self-duality equation (A.23) now can be understood as that of the right-hand side

of eq. (A.26) with respect to the AB index pair. In addition the combination φ[AδB]C ∓
εABC

DφD also satisfies the same type of the self-duality equation with respect to the AB

index pair. So we see that the combination fAB
C + φ[Aδ

C
B] also satisfies the same self-

duality equation

fAB
E + φ[Aδ

E
B] = ±1

2
εAB

CD
(
fCD

E + φ[Cδ
E
D]

)
. (A.27)

Let us introduce a volume form v = λ−1vg for some function λ where

vg = E1 ∧E2 ∧ E3 ∧ E4. (A.28)

Suppose that EA’s preserve the volume form v, i.e., LEA
v = 0 which is always possible, as

rigorously proved in [75], by considering an SO(4) rotation (A.4) of basis vectors and choos-

ing the function λ properly 23. This leads to the relation LEA
v = (∇·EA−EA log λ)v = 0.

Since ∇ · EA = −ωBA
B = −φA, we get the identity φA = −EA log λ for the volume form

v. Define DA ≡ λEA ∈ TM . Then we have

[DA,DB ] = λ
(
−fAB

C + EA log λδC
B − EB log λδC

A

)
DC

= −λ
(
fAB

C + φ[Aδ
C
B]

)
DC . (A.29)

Finally we get from eq. (A.27) the following self-duality equation [73, 76]

[DA,DB ] = ±1

2
εAB

CD[DC ,DD]. (A.30)

23Since we imposed the vanishing of (anti-)self-dual spin connections, ω
(+)a
M = 0 or ω

(−)a
M = 0, a remaining

symmetry is SU(2)L,R up to a rigid rotation. Together with the function λ, so totally four free parameters,

it is enough to achieve the condition LEAv = 0.

– 58 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
2

Conversely one can proceed with precisely reverse order to show that the vector fields

{DA} satisfying eq. (A.30) describe the self-dual spin connections satisfying eq. (A.23).

Note that the vector fields DA now preserve a new volume form v4 = λ−2vg which can be

seen as follows

0 = LEA
(λ−1vg) = d

(
ιEA

(λ−1vg)
)

= d
(
ιλEA

(λ−2vg)
)

= d
(
ιDA

v4

)
= LDA

v4. (A.31)

The function λ in terms of v4 is therefore given by

λ2 = v4(D1,D2,D3,D4) (A.32)

and the metric is determined by eq. (A.3) as

ds2 = λ2δABD
A ⊗DB = λ2δABD

A
MDB

N dXM ⊗ dXN (A.33)

where EA = λDA.

In summary eqs.(A.22), (A.23) and (A.30) are equivalent each other (up to a gauge

choice) and equally describe self-dual Einstein gravity.

Now eq. (A.30) clearly exposes to us that the self-dual Einstein gravity looks very much

like the self-duality equation in gauge theory. Indeed one can easily see from eq. (3.26)

that the self-dual Einstein gravity in the form of eq. (A.30) appears as the leading order of

the self-dual NC gauge fields described by

F̂AB = ±1

2
εAB

CDF̂CD. (A.34)

This completes the proof of the equivalence between self-dual NC electromagnetism on

R4
NC or R2

C ×R2
NC and self-dual Einstein gravity.

B Einstein equations from gauge fields

In this section we will generalize the equivalence between the emergent gravity and the

Einstein gravity to arbitrary NC gauge fields. We show that the dynamics of NC U(1)

gauge fields at a commutative limit can be understood as the Einstein gravity described by

eq. (3.38) where the energy momentum tensor is given by usual Maxwell fields and by an

unusual “Liouville” field related to the conformal factor (or the size of spacetime) given by

eq. (3.48). In the end, we will find some remarkable physics regarding to a novel structure

of spacetime.

In a non-coordinate (anholonomic) basis {EA} satisfying the commutation rela-

tion (A.11), the spin connections ωA
B

C are defined by

∇AEC = ωA
B

CEB (B.1)

where ∇A ≡ ∇EA
is the covariant derivative in the direction of a vector field EA. Acting

on the dual basis {EA}, they are given by

∇AE
B = −ωA

B
CE

C . (B.2)
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Since we will impose the torsion free condition, i.e.,

T (A,B) = ∇[AEB] − [EA, EB ] = 0, (B.3)

the spin connections are related to the structure functions

fABC = −ωACB + ωBCA. (B.4)

The Riemann curvature tensors in the basis {EA} are defined by

R(A,B) = [∇A,∇B]−∇[A,B] (B.5)

or in component form

RAB
C

D = 〈EC , R(EA, EB)ED〉
= EAωB

C
D − EBωA

C
D + ωA

C
EωB

E
D − ωB

C
EωA

E
D + fAB

EωE
C

D. (B.6)

Imposing the condition that the metric (3.41) is covariantly constant, i.e.,

∇C

(
ηABE

A ⊗ EB
)

= 0, (B.7)

or, equivalently,

ωCAB = −ωCBA, (B.8)

the spin connections ωCAB then have the same number of components as fABC . Thus

eq. (B.4) has a unique solution and it is precisely given by eq. (A.9). In coordinate (holo-

nomic) bases {∂M , dX
M}, the curvature tensors (B.6) also coincide with eq. (A.8). The

definition (B.5) together with the metricity condition (B.8) immediately leads to the fol-

lowing symmetry property

RABCD = −RABDC = −RBACD. (B.9)

As we remarked in section 3.2, we want to represent the Riemann curvature tensors in

eq. (B.6) in terms of the gauge theory basisDA in order to use the equations of motion (3.51)

and the Bianchi identity (3.52). Using the relation (3.43), the spin connections in eq. (A.9)

are given by

λωABC =
1

2
(fABC − fBCA + fCAB)−DB log ληCA +DC log ληAB . (B.10)
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It is then straightforward to calculate each term in eq. (B.6). We list the results:

EAωBCD = − 1

2λ2
DA log λ(fBCD − fCDB + fDBC)

+
1

λ2
ηBDDA log λDC log λ− 1

λ2
ηBCDA log λDD log λ

+
1

2λ2
DA(fBCD − fCDB + fDBC)

+
1

λ2

(
ηBCDADD log λ− ηBDDADC log λ

)
, (B.11)

ωACEωB
E

D =
1

4λ2
ηEF (fACE − fCEA + fEAC)(fBFD − fFDB + fDBF )

+
1

2λ2
ηEF

(
ηAC(fBED− fEDB+ fDBE)− ηBD(fACE− fCEA+fEAC)

)
DF log λ

+
1

2λ2

(
(fACB − fCBA + fBAC)DD log λ− (fBAD − fADB + fDBA)DC log λ

)

+
1

λ2

(
ηBDDA log λDC log λ−ηABDC log λDD log λ+ηACDB log λDD log λ

)

− 1

λ2
ηACηBDη

EFDE log λDF log λ, (B.12)

fAB
EωECD =

1

2λ2
fAB

E(fECD − fCDE + fDEC)

+
1

λ2
(fABCDD log λ− fABDDC log λ)

+
1

2λ2

(
(fBCD − fCDB + fDBC)DA log λ− (fACD − fCDA + fDAC)DB log λ

)

+
1

λ2

(
ηBCDA log λDD log λ− ηBDDA log λDC log λ

)

+
1

λ2

(
ηADDB log λDC log λ− ηACDB log λDD log λ

)
. (B.13)

Substituting these expressions into eq. (B.6), the curvature tensors are given by

RABCD =
1

λ2

[{
1

2
DA(fBCD − fCDB + fDBC) (B.14)

+ηBCDADD log λ− ηBDDADC log λ

+
1

4
ηEF (fACE − fCEA + fEAC)(fBFD − fFDB + fDBF )

+
1

2
ηEF

(
ηAC(fBED − fEDB + fDBE)− ηBD(fACE − fCEA + fEAC)

)
DF log λ

+
1

2

(
(fACB − fCBA + fBAC)DD log λ− (fBAD − fADB + fDBA)DC log λ

)

+ηBDDA log λDC log λ+ ηACDB log λDD log λ

−ηACηBDη
EFDE log λDF log λ

}
− {A↔ B}

]

+
1

λ2

[
1

2
fAB

E(fECD − fCDE + fDEC) + (fABCDD log λ− fABDDC log λ)

]
.
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Using eq. (B.14), the Ricci tensors RAC ≡ ηBDRABCD and the Ricci scalar R ≡
ηACRAC are accordingly determined as

RAC =
1

λ2

[
− 1

2
(D − 4)(DADC +DCDA) log λ− ηACη

BDDBDD log λ

+(D − 2)DA log λDC log λ− (D − 4)ηACη
BDDB log λDD log λ

+
1

2
(D − 4)ηBD

(
fABC − fBCA

)
DD log λ

−1

2
ηBDDB(fACD − fCDA + fDAC)

+
1

4
ηBDηEF fBECfDFA +

1

2
ηBDfAB

E(fECD − fCDE)

]
, (B.15)

R =
1

λ2

[
− 2(D − 3)ηACDADC log λ− (D − 2)(D − 5)ηACDA log λDC log λ

+
1

4
ηACηBDfAB

E(2fECD − fCDE)
]
, (B.16)

where we have used the relation (3.46) and

1

4
ηBDηEF (fBCE − fCEB + fEBC)(fAFD − fFDA + fDAF )

=
1

2
ηBDfAB

EfDEC −
1

4
ηBDηEF fBECfDFA. (B.17)

Up to now we have not used eqs.(3.51) and (3.52). We have simply calculated curva-

ture tensors for an arbitrary metric (3.41). Now we will impose on the curvature tensors

the equations of motion eq. (3.51) and the Bianchi identity (3.52). First note the follow-

ing identity

R(EA, EB)EC +R(EB , EC)EA +R(EC , EA)EB

= [EA, [EB , EC ]] + [EB , [EC , EA]] + [EC , [EA, EB ]] (B.18)

which can be derived using the condition (B.3). The Jacobi identity then implies R[ABC]D =

0. Since DA = λEA, we have the relation [D[A, [DB ,DC]]] = λ3[E[A, [EB , EC]]] where all

the terms containing the derivations of λ cancel each other. Thus the first Bianchi identity

R[ABC]D = 0 follows from the Jacobi identity [D[A, [DB ,DC]]] = 0. Then eq. (3.52) confirms

that the guess (3.37) is pleasingly true, i.e.,

D̂[AF̂BC] = 0 ⇐⇒ R[ABC]D = 0. (B.19)

One can also directly check eq. (B.19) using the expression (B.14):

R[ABC]D =
1

λ2

(
D[AfBC]D − f[BC

EfA]ED

)
= 0. (B.20)

Let us summarize the algebraic symmetry of curvature tensors determined by the

properties about the torsion and the tangent-space group:

RABCD = −RABDC = −RBACD, (B.21)

R[ABC]D = 0, (B.22)

RABCD = RCDAB (B.23)
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where the last symmetry can be derived by using the others. Therefore it is obvious that the

vector fieldsDA ∈ TM satisfying eq. (3.52) describe a usual (pseudo-)Riemannian manifold.

Some useful properties can be further deduced. Contracting the indices C and D in

eq. (3.52) leads to

DAρB −DBρA + fAB
CρC = DCfAB

C (B.24)

and the left-hand side identically vanishes due to eq. (3.40) with eq. (3.46). Thus we get

DCfAB
C = 0. (B.25)

Similarly, from eq. (3.51), we get

ηABDADB log λ =
1

2
DAρ

A = −1

2
ηABfAC

DfBD
C . (B.26)

eq. (B.25) now guarantees that the Ricci tensor (B.15) is symmetric, i.e., RAC = RCA. (It

should be the case since the symmetry property (B.23) shows that RAC = ηBDRABCD =

ηDBRCDAB = RCA. Recall that the property (B.23) results from the Bianchi iden-

tity (B.20).)

In order to check the conjecture (3.38), we first consider the Euclidean D = 4 case

since we already know the answer for the self-dual case. For the Euclidean space we will

not care about raising and lowering indices. Using eqs.(3.46), (3.51) and (B.26), the Ricci

tensor (B.15) can be rewritten as follows

RAC =
1

2λ2

[
δACfBDEfBED + fBABfDCD − fBDAfBCD − fBDCfBAD

+
1

2
fBDAfBDC + fABDfDCB − fABDfCBD

]
. (B.27)

Now we decompose fABC into self-dual and anti-self-dual parts as in eq. (A.12)

fABC = f
(+)a
C ηa

AB + f
(−)a
C η̄a

AB (B.28)

where

f
(±)a
C η

(±)a
AB =

1

2

(
fABC ±

1

2
εAB

DEfDEC

)
(B.29)

and introduce a completely antisymmetric tensor defined by

ΨABC = fABC + fBCA + fCAB ≡ εABCDΨD. (B.30)

Using the decomposition (B.28) and eq. (A.15) one can easily see that

ΨA = − 1

3!
εABCDΨBCD = −(f

(+)a
B ηa

AB − f
(−)a
B η̄a

AB), (B.31)

while eq. (3.46) leads to

ρA = fBAB = f
(+)a
B ηa

AB + f
(−)a
B η̄a

AB . (B.32)
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The calculation of the Ricci tensor (B.27) can straightforwardly be done using the

decomposition (B.28) and the identities (A.19) and (A.20) after rewriting the following

term

fABDfDCB = fABD(ΨDCB − fCBD − fBDC)

= εDCBE(f
(+)a
D ηa

AB + f
(−)a
D η̄a

AB)ΨE − fABDfCBD − fABDfBDC

= −ΨAΨC − (f
(+)a
A ηa

CD − f
(−)a
A η̄a

CD)ΨD + δACΨDΨD

−fABDfCBD − fABDfBDC (B.33)

where eq. (A.17) was used at the last step. An interesting thing is that eq. (B.33) cancels

most terms in eq. (B.27) leaving a remarkably simple form

RAC = − 1

λ2

[
f
(+)a
D ηa

ABf
(−)b
D η̄b

CB + f
(+)a
D ηa

CBf
(−)b
D η̄b

AB

−
(
f
(+)a
B ηa

ABf
(−)b
D η̄b

CD + f
(+)a
B ηa

CBf
(−)b
D η̄b

AD

)]
. (B.34)

Note that the right-hand side of eq. (B.34) is purely interaction terms between the

self-dual and anti-self-dual parts in eq. (B.28). (The same result was also obtained in [75].)

Therefore, if NC gauge fields satisfy the self-duality equation (3.44), they describe a Ricci-

flat manifold, i.e., RAC = 0. Of course, this result is completely consistent with that in

appendix A. Moreover we see the reason why self-dual NC gauge fields satisfy the Einstein

equation (3.38) with vanishing energy-momentum tensor.

Finally we can calculate the Einstein tensor to find the form of the energy-momentum

tensor defined by eq. (3.38):

EAB = RAB −
1

2
δABR

= − 1

λ2

(
f
(+)a
D ηa

ACf
(−)b
D η̄b

BC + f
(+)a
D ηa

BCf
(−)b
D η̄b

AC

)

+
1

λ2

(
f
(+)a
C ηa

ACf
(−)b
D η̄b

BD + f
(+)a
C ηa

BC f
(−)b
D η̄b

AD − δABf
(+)a
D ηa

CDf
(−)b
E η̄b

CE

)
(B.35)

where the Ricci scalar R is given by

R =
2

λ2
f
(+)a
B ηa

ABf
(−)b
C η̄b

AC . (B.36)

We have adopted the conventional view that the gravitational field is represented by the

spacetime metric itself. The problem then becomes one of finding field equations to re-

late the metric (3.41) to the energy-momentum distribution. According to our scheme,

eq. (B.35) should correspond to such field equations, i.e., the Einstein equations. In other

words, if we are clever enough, we should be able to find the NC gauge theory described by

eqs.(3.51) and (3.52) starting from the Einstein gravity described by eqs.(B.22) and (B.35)

by properly reversing our above derivation as we have explicitly demonstrated it for the

self-dual case in appendix A.

As we explained in section 3.2, we want to identify eq. (B.35) with an energy-

momentum tensor. First note that the Ricci scalar R, (B.36), is nonvanishing for a generic
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case. This means that there is an extra field contribution to the energy-momentum ten-

sor in addition to Maxwell fields whose energy-momentum tensor is traceless. Since the

extra field energy-momentum tensor turns out to be basically a gradient volume energy

(see the latter part of section 3.2), we call it the “Liouville” energy-momentum tensor. A

similar result was also obtained in [17] where it was dubbed as the ‘Poisson’ energy. Since

the first term in eq. (B.35) is traceless due to eq. (A.18), it would be a candidate of the

Maxwell energy-momentum tensor while the second term would be the Liouville energy-

momentum tensor. So we tentatively make the following identification for the Maxwell

energy-momentum tensor T
(M)
AB and the Liouville energy-momentum tensor T

(L)
AB

8πG4

c4
T

(M)
AB = − 1

λ2

(
f
(+)a
D ηa

ACf
(−)b
D η̄b

BC + f
(+)a
D ηa

BC f
(−)b
D η̄b

AC

)
,

= − 1

λ2

(
fACDfBCD −

1

4
δABfCDEfCDE

)
, (B.37)

8πG4

c4
T

(L)
AB =

1

λ2

(
f
(+)a
C ηa

AC f
(−)b
D η̄b

BD + f
(+)a
C ηa

BC f
(−)b
D η̄b

AD − δABf
(+)a
D ηa

CDf
(−)b
E η̄b

CE

)
,

=
1

2λ2

(
ρAρB −ΨAΨB −

1

2
δAB(ρ2

C −Ψ2
C)
)

(B.38)

where we have used the decomposition (B.29) and the relation

f
(+)a
B ηa

AB =
1

2
(ρA −ΨA), f

(−)a
B η̄a

AB =
1

2
(ρA + ΨA).

We have anticipated that the energy-momentum tensor (B.37) will be related to that

of Maxwell fields since both are definitely traceless in four dimensions. So our problem is

how to rewrite the energy-momentum tensor in terms of NC fields in ⋆-algebra Aθ, denoted

as T̂AB(Aθ), using the expression (B.37) defined in TM , denoted as TAB(TM). In other

words, we want to translate TAB(TM) into an Aθ-valued energy momentum tensor. This

problem is quite subtle.

Recall that NC fields are identified with vector fields in TM through the map (3.23)

at the leading order. For example, we get the following identification from eq. (3.26)

− i[F̂AB , f̂ ]⋆ = {FAB , f}θ + · · · = [DA,DB ][f ] + · · ·
= −fAB

CDC [f ] + · · · . (B.39)

Note that eq. (B.39) is nothing but the Lie algebra homomorphism (3.29) for the Poisson

algebra. But a NC field regarded as an element of NC ⋆-algebra Aθ in general lives in

a Hilbert space H, e.g., the Fock space (3.2) while the vector fields DA in eq. (3.23) are

defined in the real vector space TM . Furthermore we see from eqs.(3.23) and (B.39) that

“anti-Hermitian” operators in NC algebra Aθ such as the NC fields D̂A and −iF̂AB are

mapped to real vector fields in TM . Thus we have the bizarre correspondence between

geometry defined in TM and NC algebra Aθ
24

Anti−Hermitian operators on H ⇔ Real vector fields on TM. (B.40)

24It might be remarked that the transition from TM to Aθ is analogous to that from classical mechanics

(an R-world) to quantum mechanics (a C-world). See section 5.4 in [32] for the exposition of the similar

problem in the context of quantum mechanics.
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In order to identify Aθ-valued quantities from TM -valued ones, it is first necessary to

analytically continue the real vector space TM to a complex vector space TMC. At the

same time, the real vector field DA is replaced by a self-adjoint operator DA in TMC and

the structure equation (3.40) instead has the form

[DA,DB ] = ifAB
CDC . (B.41)

Now we want to translate a quantity defined on TMC such as eq. (B.41) into a NC field de-

fined on H as the Weyl-Wigner correspondence [1]. Since we have the identification (B.39),

we need to relate the inner product on the operator algebra Aθ, denoted as 〈V̂ , Ŵ 〉Aθ
for

V̂ , Ŵ ∈ Aθ to the inner product 〈V,W 〉TMC
≡ V ·W on TMC for V,W ∈ TMC, both of

which are defined to be positive definite. To do this, we will take the natural prescription

according to the correspondence (B.39)

〈F̂AB , F̂CD〉Aθ
⇔ fAB

EfCD
F (DE · DF ) + · · · (B.42)

where the ellipsis means that we need a general inner product for multi-indexed vector

fields, e.g., polyvector fields though the leading term is enough for our purpose. Note that

DA = λEA carry the mass dimension, i.e., [DA] = [EA] = L−1 where λ is chosen to be

real such that both DA and EA are self-adjoint operators in TMC. Hence we will take

into account the physical dimension of the vector fields DA in the definition of the inner

product (B.42)

DA · DB = λ2(EA · EB) =
λ2

|Pfθ| 1n
δAB . (B.43)

Here the noncommutativity |θ| is the most natural dimensionful parameter at our hands

that can enter the definition (B.43).

Suppose that the analytic continuation was performed and we adopt the prescrip-

tion (B.42). Then the analytic continuation from TM to TMC accompanies the i factor

in the structure equation (B.41) which will introduce a sign flip in eq. (B.37).25 And then

TAB(TMC) will be identified using the prescription (B.42) with T̂AB(Aθ). After taking the

sign flip into account, one can finally identify T̂AB(Aθ) from the Maxwell energy-momentum

tensor (B.37)

8πG4

c4
T̂

(M)
AB (Aθ) =

g2
Y M |Pfθ| 1n
~2c2λ4

~
2c2

g2
Y M

(
F̂ACF̂BC −

1

4
δABF̂CDF̂CD

)
(B.44)

where we simply rewrote the global factor for later use. Recall that we are taking the

commutative limit |θ| → 0 (see the paragraph in eq. (3.39)). Thus one can simply replace

the field strengths in eq. (B.44) by commutative ones, i.e., F̂AC ≈ FAC + O(θ), since the

25To avoid any confusion, we point out that it never means changing the sign of eq. (B.37) because

eq. (B.37) is obviously defined on TM . It simply prescribes the analytic continuation to get a correct

definition of bTAB(Aθ). Anyway we think that this perverse sign problem will disappear (at the price of

transparent geometrical picture) if we work in the vector space TMC from the outset using the structure

equation (B.41). It will also be useful to clearly understand the structure of Hilbert space defining (quantum)

gravity, especially, in the context of emergent gravity. We hope to address this approach in the near future.
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global factor |Pfθ| 1n already contains O(θ). Therefore, in the commutative limit, the trace

of NC spacetime in eq. (B.44) only remains in the global factor which will be identified

with the Newton constant. Thus we get the usual Maxwell energy-momentum tensor at

the leading order. It should be pointed out that the energy momentum tensor (B.44) is

not quite the same as that derived from the action (3.9) since the background part BMN

does not appear in the result. We will see in section 3.4 that this fact bears an important

consequence about the cosmological constant and dark energy.

Note that the result (B.44) is independent of spacetime dimensions including the front

factor. By comparing the expression (B.44) with eq. (3.38), we get the identification of the

Newton “constant”

GD =
c2g2

Y M |Pfθ| 1n
8π~2λ4

. (B.45)

Thereby we almost confirmed eq. (3.39) obtained by a simple dimensional analysis except

the dimensionless factor λ4. (Of course the dimensional analysis alone cannot fix any

dimensionless parameters.) Then eq. (B.45) comes with a surprise. It raises a question

whether the Newton “constant” GD is a constant or not. If it is a constant, then it means

that gY M (or even ~ and c ?) depends on λ such that GD is a constant. Or if gY M , c

and ~ are really constants, GD depends on the conformal factor (or the size of spacetime)

given by eq. (3.48). We prefer the former interpretation since we know that gY M changes

under a renormalization group flow. Furthermore we note that g2
Y M in NC gauge theory

depends on an open string metric in B-field background [22] and λ2 is also related to the

metric gMN through the relation (3.48). (In four dimensions λ2 ∼ √−g.) Nevertheless, we

could not find any inconsistency for the latter interpretation either, because it seems to be

consistent with current laboratory experiments since λ = 1 for any flat spacetime.

In the course of our derivation, we have introduced a completely antisymmetric tensor

ΨABC = fABC + fBCA + fCAB. (B.46)

So one may identify it with a 3-form field

H ≡ 1

3!
ΨABCE

A ∧ EB ∧ EC =
λ

2
fABCE

A ∧ EB ∧ EC (B.47)

where we used eq. (3.43). But H is not a closed 3-form in general. Using the structure

equation

dEA =
1

2
fBC

AEB ∧ EC (B.48)

one can show that instead it satisfies the following relation

dH =
λ

2

(
EAfBCD − fBC

EfAED

)
EA ∧ EB ∧ EC ∧ ED

+

(
1

4λ
fAD

EfBCE +
3λ

2
EA log λfBCD

)
EA ∧ EB ∧ EC ∧ED

=
|Pfθ| 1n
λ3

F ∧ F + 3d log λ ∧H (B.49)
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where we used the Jacobi identity [E[A, [EB , EC]]] = 0 to show the vanishing of the first

term and the map (B.42) for the second term. From eq. (B.49) we see that H̃ ≡ λ−3H =
1
3!ΨABCD

A ∧ DB ∧ DC is closed, i.e., dH̃ = 0, if and only if F ∧ F = 0. In this case

locally H̃ = dB̃ by the Poincaré lemma. Indeed the 3-form H̃ = dB̃ is quite similar to the

Kalb-Ramond field in string theory while the conformal factor λ in eq. (3.46) behaves like

a dilaton field in string theory. In its overall picture the emergent gravity is very similar

to string theory where a metric gMN , an NS-NS 3-form H = dB and a dilaton Φ describe

a gravitational theory in D dimensions.

Now we go to the second energy-momentum tensor (B.38). Note that ρA is determined

by the volume factor in eq. (3.48) evaluated in the gauge theory basis {DA} while ΨA is

coming from the 3-form (B.47). eq. (B.38) has an interesting property that they identically

vanish for flat spacetime and self-dual gauge fields where ρA = ±ΨA. This kind of energy

has no counterpart in commutative spacetime and would be a unique property appearing

only in NC spacetime. This exotic feature might be expected from the beginning because

the NC spacetime leads to a perplexing mixing between short (UV) and large (IR) distance

scales [55]. To illuminate the property of the energy-momentum tensor (B.38), let us simply

assume that its average (in a broad sense) is SO(4) invariant, i.e.,

〈ρAρB〉 =
1

4
δABρ

2
C , 〈ΨAΨB〉 =

1

4
δABΨ2

C . (B.50)

Then the average of the energy-momentum tensor (B.38) is given by

〈T (L)
AB 〉 = −

c4

64πG4λ2
δAB(ρ2

C −Ψ2
C). (B.51)

Note that the Ricci scalar (B.36) is purely coming from this source since eq. (B.44) is

traceless. For a constant curvature space, e.g., de Sitter or anti-de Sitter space, the Ricci

scalar R = 1
2λ2 (ρ2

A−Ψ2
A) will be constant. In this case the energy-momentum tensor (B.51)

precisely behaves like a cosmological constant since T
(L)
AB = − c4

32πG4
δABR. Of course this

conclusion is meaningful only if eq. (B.35) allows a constant curvature spacetime. But the

energy momentum tensor given by eq. (B.51) will behave like a cosmological constant as

ever for an almost constant curvature space as shown in eq. (3.96).

Although we have taken the Euclidean signature for convenience, it can be analytically

continued to the Lorentzian signature.26 For example, a crucial step in our approach was

the decomposition (B.28). But that decomposition can also be done in the Lorentzian

signature by introducing an imaginary self-duality η
(±)a
AB = ± i

2εAB
CDη

(±)a
CD where SU(2)L,R

is formally extended to SL(2,C). Indeed the proof in appendix A can equally be done

using the imaginary self-duality as adopted in [73]. Or equivalently we can use the spinor

representation [30] for an arbitrary anti-symmetric rank 2-tensor

FAB = Fabȧḃ = εȧḃφab + εabψȧḃ (B.52)

26The Wick rotation will be defined by x4 = ix0. Under this Wick rotation, δAB → ηAB = (− + ++)

and ε1234 = 1 → −ε0123 = −1. Then we get Ψ
(E)
A = iΨ

(L)
A according to the definition (B.30).

– 68 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
2

where a, ȧ, · · · are SL(2,C) spinor indices. For a real 2-form, ψ = φ̄. In this notation, the

2-form dual to FAB is given by

∗FAB =
1

2
εAB

CDFCD = ∗Fabȧḃ (B.53)

= −iεȧḃφab + iεabψȧḃ, (B.54)

that is,
∗Fabȧḃ = iFabḃȧ = −iFbaȧḃ. (B.55)

For the sake of completeness we will also consider D = 2 and D = 3 cases. For conve-

nience we consider the Euclidean signature again for both cases. (The D = 2 case should

be Euclidean in our context since we don’t want to consider time-space noncommutativity.)

From now on we set ~ = c = 1.

In two dimensions, the analysis is simple. So we immediately list the formulas:

fABC ≡ εABΨC , (B.56)

ρA = fBAB = 2DA log λ, (B.57)

ΨA = εABρB = 2εABDB log λ, (B.58)

DAρA = −ρAρA = −ΨAΨA, (B.59)

DAΨA = 0, (B.60)

RABCD =
1

2
εABεCDR =

1

2
(δACδBD − δADδBC)R, (B.61)

R =
2

λ2
(DADA log λ− 2DA log λDA log λ). (B.62)

Of course it is a bit lengthy to directly check eq. (B.61) from eq. (B.14).

Using the equation of motion (B.59), the Ricci scalar (B.62) can be rewritten as

R = − 2

λ2
ρAρA = − 2

λ2
ΨAΨA = − 8

λ2
DA log λDA log λ. (B.63)

The Einstein equation in two dimensions can be written as

RAB =
1

2
δABR = − 1

2λ2
δABfCDEfCDE. (B.64)

An interesting thing in eq. (B.63) is that the Ricci scalar is always negative unlike as the

4-dimensional case where R = 1
2λ2 (ρ2

A − Ψ2
A). Hence eq. (B.64) describes only hyperbolic

(negative curvature) Riemann surfaces but most Riemann surfaces belong to this class.

From eq. (B.64) one can see that the case with F̂AB = 0 corresponds to parabolic

(curvature 0) Riemann surfaces which include a plane R2 and a torus T2. Then a natural

question is where the different topology for R2 and T2 comes from. Note that there are still

background gauge fields given by eq. (3.1) although the fluctuations are vanishing. (Two-

dimensional gauge fields do not have any physical degrees of freedom but encode only a

topological information. So the fluctuations here mean the variation of a topological shape.)

We observe that, though B ∈ H2(M) in eq. (3.1) is constant, it reveals its topology through

the first cohomology group H1(M) which measures the obstruction for symplectic vector
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fields to be globally Hamiltonian (see the footnote 3 in [3]). That is the only source we can

imagine for the origin of the topology of Riemann surfaces. We believe that the topology

of the fluctuation F̂AB in eq. (B.64) similarly appears in hyperbolic Riemann surfaces with

a higher genus. Then a natural question is about a rational (positive curvature) Riemann

surface, i.e., S2. It may be necessary to introduce a mass term as a potential term. We

leave it for a future work.27

Now we go over to D = 3 case. In three dimensions fABC have totally 9 components.

We will decompose them into 9 = 1 + 3 + 5 as follows

fABC = εABCΨ + εABD(ρDC + ϕDC) (B.65)

where the first term is totally anti-symmetric part like eq. (B.46) and the second term

is anti-symmetric, ρDC = −ρCD, and the third term is symmetric, ϕDC = ϕCD, and

traceless, ϕCC = 0. eq. (3.46) then leads to the relation ρAB = 1
2εABCρC . Therefore we

get the following decomposition

fABC = εABCΨ +
1

2
(δACρB − δBCρA) + εABDϕDC . (B.66)

In other words, the symmetric part can be deduced from eq. (B.66) as follows

ϕAB =
1

2
εACDfCDB −

1

2
εABCρC − δABΨ. (B.67)

Using the variables in eq. (B.66), the equations of motion (3.51) can be written as

DBfBCA = −2δACΨ2 −ΨϕAC +
1

4
(δACρBρB − ρAρC) (B.68)

+
3

2
εACBΨρB + εCBDρBϕDA +

1

2
εACBρDϕBD + ϕABϕCB . (B.69)

Contracting the indices A and C in the above equation leads to the relation

DAρA = 6Ψ2 − 1

2
ρAρA − ϕABϕAB . (B.70)

Using the above results, it is straightforward though a bit lengthy to calculate the Ricci

tensor (B.15)

RAC = − 1

λ2

(
fABDfCBD −

1

4
δAC fBEDfBED

)

+
1

4λ
(∇AρC +∇CρA) +

1

2λ2
ρAρC (B.71)

and the Ricci scalar (B.16)

R =
1

λ
∇AρA +

1

2λ2

(
ρAρA − 9Ψ2

)
. (B.72)

27In this respect, the work [77] by H. Shimada should be interesting. He showed that the topology of a

membrane in matrix theory can be captured by a Hamiltonian function defined on a Riemann surface. The

Hamiltonian function for a nontrivial Riemann surface is in general given by a Morse function containing

several nondegenerate critical points, e.g., a height function, where the topology of a membrane is realized

as the Morse topology.
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Since the first term in eq. (B.15) is nonvanishing while it was absent in four dimensions,

we introduced the covariant derivative of the “Liouville” field ρA defined by

∇AρC = EAρC − ωA
B

CρB (B.73)

and then we used the following relation derived from eq. (B.10)

∇AρC +∇CρA =
1

λ

(
DAρC +DCρA − (fABC + fCBA)ρB + δACρBρB − ρAρC

)
. (B.74)

Also the expression (B.72) has been achieved after using the relation

fABCfABC = 18Ψ2 − 2λ∇AρA. (B.75)

Finally we can get the 3-dimensional Einstein equation induced from the NC U(1)

gauge fields

EAB = RAB −
1

2
δABR

= 8πG3

(
T

(M)
AB + T

(L)
AB

)
(B.76)

where the Maxwell energy-momentum tensor and the Liouville energy-momentum tensor

are, respectively, given by

T
(M)
AB = − 1

8πG3λ2

(
fACDfBCD −

1

4
δABfCDEfCDE

)
(B.77)

T
(L)
AB =

1

16πG3λ2

(
1

2

(
∇̃AρB + ∇̃BρA + ρAρB

)
− δAB

(
∇̃CρC +

1

2
(ρCρC − 9Ψ2)

))
(B.78)

where ∇̃A = λ∇A.

Following the exactly same strategy as the four dimensional case, one can identify

T̂
(M)
AB (Aθ) from eq. (B.77) getting the same form as eq. (B.44). Once again we get an

exotic form of energy described by eq. (B.78) in addition to the usual Maxwell energy-

momentum tensor. This energy density is also related to the gradient volume energy. (See

section 3.2.) But the explicit form is different from the four dimensional one, eq. (B.38).

This difference is due to the fact that the first term in eq. (B.15), which appears as the

covariant derivative terms in eq. (B.78), is absent in four dimensions. An interesting thing

in eq. (B.78) is that ρA behaves like a massive field whose mass is vanishing in flat spacetime

since λ = 1 in that case. We further discuss in section 3.4 about the physical implications

of the Liouville energy-momentum tensor.

In higher D ≥ 5 dimensions, the calculation of the energy-momentum tensor from

eq. (B.15) becomes more complicated. The 3-form field (B.47) contributes nontrivially to

the energy-momentum tensor. We have not tried to find its concrete form. We hope to

attack this problem in the near future.
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